
i
i

i
i

i
i

i
i

ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Design and Evaluation of
Website Fingerprinting
Techniques

Marc Juárez Miró

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Electrical Engineering

July 2019

Supervisor:
Prof. dr. Claudia Diaz

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Design and Evaluation of Website Fingerprinting
Techniques

Marc JUÁREZ MIRÓ

Examination committee:
Prof. dr. Adhemar Bultheel, chair
Prof. dr. Claudia Diaz, supervisor
Prof. dr. ir. Bart Preneel
Prof. dr. ir. Frank Piessens
Prof. dr. Rachel Greenstadt
(NYU Tandon School of Engineering)

Prof. dr. Matthew Wright
(Rochester Insitute of Technology)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Electrical Engineer-
ing

July 2019

i
i

i
i

i
i

i
i

© 2019 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Marc Juárez Miró, Kasteelpark Arenberg 10, bus 2452, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

i
i

i
i

i
i

i
i

Acknowledgements

The work included in this thesis would have not been possible without the
support and assistance of many people. I want to express my gratitude to those
who, in many different ways, have contributed to it.

First and foremost, I would like to express my deepest appreciation to my
advisor, Prof. Claudia Diaz, for all the mentorship and support throughout
my PhD. I will always be thankful for all the opportunities she gave me to
develop as a researcher. She trusted me and steered me to work on the topic of
this thesis, a topic that perfectly aligned with my research interests. Claudia
shared with me her ideas, many of which are the basis for the work included in
this thesis, and offered me to explore them with her. She was always kind and
friendly; even during tough times, she was there to listen to me and guide me.
Among all the advice she gave me, Claudia taught me about the importance of
keeping the big picture in mind, a lesson that I treasure and try to practice as
much as I can.

I would like to extend my sincere gratitude to Prof. Bart Preneel for his support
and for providing such a vibrant research environment. He was always very
encouraging and thoughtful in all his comments. I am deeply grateful to him,
Prof. Frank Piessens, Prof. Matthew Wright, and Prof. Rachel Greenstadt, for
their valuable feedback, which has substantially improved this thesis. I had
the privilege to work with them for some of my research and, due to these
collaborations, I had the opportunity to visit Rachel and Matt in Philadelphia
and Rochester, respectively. I thank them for their warm hospitality and for
taking such good care of me. Finally, I would like to thank Prof. Adhemar
Bultheel for chairing this jury.

During these years I have shared my office with wonderful people. I keep good
memories of the old ESAT office with Michael, Ero, Güneş, and Kai, during my
Erasmus and the first years of PhD. In particular, I want to express my great
appreciation to Güneş, who has not only been an amazing friend but also a

i

i
i

i
i

i
i

i
i

ii ACKNOWLEDGEMENTS

mentor to me; I admire his rigor and passion for research. In the new ESAT
building, I also had the pleasure to share the office with Bekah and Chris. Bekah
is one of the most easy-going people I have ever met. I especially appreciate that
she introduced me to the world of beer-making and blue-grass music. Chris filled
the room with complex concepts about philosophy, journalism, and Central Asia
cultures, and came to the rescue by lending me the attire for my preliminary
defense. Tariq deserves an honorary mention here since, although mine was not
his official office, he was visiting it almost daily. I am indebted to him for all
the advice and guidance he gave me. I am very lucky to have crossed paths
with all these extraordinary people; each of them has had a great impact on me.

I am grateful to my colleagues in COSIC and, in particular, the Privacy Group
for proof-reading my papers and listening to my presentations. I cannot thank
them enough for all their feedback and support. Special thanks to (in no
particular order): Iraklis, Rafa, Fatemeh, Tariq, Aysajan, Enrique, Elena, Josep,
Sara, Mustafa, Abdel, Michael, Seda, Güneş, Bekah, Ilia, Ero, Edu, Ren, and
Filipe. Especially helpful to me during thesis-writing time were Iraklis, Güneş,
Fatemeh and Michael, who sent me their latex templates; and Sara, who was so
kind to translate the abstract of this thesis to Dutch.

This journey would have not been as smooth as it was if it had not been for the
excellent technical and administrative departments in ESAT. Special thanks to
Péla, who was constantly anticipating anything I might need and whose cheerful
emails made my days. Thanks also go to Elsy and Wim, who were extremely
helpful with the financial administration, making me completely oblivious to
it. I also want to acknowledge Dana’s help with basically anything I asked her.
Finally, the ESAT’s IT group had a lot of patience with me. Special thanks to
Rik for helping me maintain servers for our experiments.

I would also like to thank people in other institutions who guided me during
these years. I am grateful to Dr. Sadia Afroz for giving me the opportunity
to intern at ICSI, and Dr. Michael C. Tschantz, for his availability and his
valuable feedback while I was there. I would like to thank my Google Summer
of Code mentors, Mike Perry and Yawning Angel, for their knowledge and for
introducing me to Tor’s and Pluggable Transports’ source code. I also would
like to thank Roger Dingledine for being so welcoming and inviting me to the
Tor-dev meetings. Finally, I want to thank Prof. Vicenç Torra for being so
laid-back with me and for arranging my research stay in COSIC during my
Erasmus. I am very grateful for all the opportunities he has given to me.

During my PhD I had the chance to work with brilliant researchers from all
over the world. In fact, my research has been influenced by inspiring discussions
I had with them. I would like to thank all of them and, in particular, I want to
thank my co-authors (in no specific order): Jamie Hayes, Giovanni Cherubin,

i
i

i
i

i
i

i
i

ACKNOWLEDGEMENTS iii

Vera Rimmer, Tom Van Goethem, Mohsen Imani, Mike Perry, Sandra Siby,
Carmela Troncoso, Narseo Vallina, Payap Sirinam, Rebekah Overdorf, Sadia
Afroz, Steven Englehardt, Arvind Narayanan, Vicenç Torra, Rob Jansen, Rafael
Gálvez, Tariq Elahi, Davy Preuveneers, Nick Nikiforakis, Seda Gürses, Güneş
Acar, Frank Piessens, Rachel Greenstadt, Claudia Diaz, Bart Preneel, and
Matthew Wright. It was a great pleasure to discuss and work with all of them.

All this research would have not been possible without the financial support of
the FWO, who has generously funded four years of my studies and a research
stay in the Rochester Institute of Technology.

I want to thank my friends at COSIC for all the fun activities and great
times we have spent together: the COSIC weekends, the football matches, the
conversations by the coffee machine, and the board games. Their friendliness
made my daily-life in COSIC really enjoyable.

During my Erasmus, summer-schools, and internships, I made friends who have
accompanied me during my PhD. I am particularly thankful to all the friends I
had in Leuven: Iraklis, Dragoş, Güneş, Kai, Olesya, Marijke, Cristina, Abhay,
Amogh, Sam, Ari, Imma, Tom, Chris, and Vera, among many others. Their
warmth and care during these years made me feel at home.

I also wish to thank my friends in Ribes who, after all these years, still amuse
me. During my time in Leuven they have let me know they are friends for life,
despite the distance and the long time without seeing each other.

I would like to thank my parents and my sister for all their love and patience
throughout these years, and for always being there for me. I extend my thanks
to the rest of my family for their unconditional support and, especially, to my
grandparents, for understanding why I have been so far from them all these
years. Finally, I am lucky to have met Adriana and have had her with me
for the last part of this journey. I want to thank her for all the patience and
support she has devoted to me. Her love has made my life more meaningful.

Thank you all!

Marc Juárez Miró
Leuven, July 2019

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Abstract

Website fingerprinting is a family of traffic analysis techniques that allows a
local eavesdropper to infer which web pages a user visits over an encrypted
channel. These techniques use machine learning classifiers to exploit features
in the metadata of network traffic, such as the lengths and timing of network
packets. Website fingerprinting has been shown to undermine the privacy
provided by privacy enhancing technologies, such as HTTPS, encrypted proxies
and VPNs, and even anonymous communications networks such as Tor.

This thesis compiles a series of studies on the methodology to evaluate the
effectiveness of website fingerprinting techniques. The overarching contribution
of these studies is to systematize the evaluation of website fingerprinting
techniques, such that it provides an accurate assessment of the performance of
website fingerprinting attacks and, consequently, informs the development of
countermeasures to mitigate them.

Our first step was to review prior work and question assumptions made in
the evaluation methodology of existing website fingerprinting attacks, arguing
that such assumptions do not necessarily hold in practice: they are simplifying
assumptions made in the laboratory but that might not hold in the real-world
deployment of the attack. We assess the impact of the assumptions on attack
effectiveness and show that the success of the attack substantially decreases
when the assumptions do not hold.

We identify biases in the methods that prior work uses to evaluate the
performance of the attack. First, we show that such evaluations have overlooked
the effect of the websites’ base rate on their measurements of prediction error.
Second, prior work only measure the central tendency of classifier performance,
albeit its high variance over different websites. We quantify the effect of such
biases and conclude that they skew the view on the effectiveness of the attack,
overestimating the adversary’s success in practice.

v

i
i

i
i

i
i

i
i

vi ABSTRACT

On the same line of work, we have explored the threat model considered in
previous studies, considering variants in order to uncover new threats that
website fingerprinting techniques may enable. First, we show how website
fingerprinting can be used from Tor middle nodes to find vulnerable targets and
measure the popularity of Tor onion services. Second, we show that website
fingerprinting is effective against DNS over HTTPS, a standardized protocol
to encrypt DNS that is being widely adopted by providers such as Google and
Cloudflare.

Turning to the development of defenses, we applied the results from the studies
above to design a lightweight, network-level defense that eliminates latency
overheads in the communication. We have specified the defense for Tor and
evaluated it in realistic scenarios. Our evaluation shows that the defense is
sufficiently effective in such scenarios, decreasing the attack’s accuracy from
90% to 20%. This study contributed to the implementation of a generalization
of this defense in Tor.

We design two novel defenses at the application layer: one as a browser add-
on and the other running in the server-side. The latter is the first server-side
countermeasure implemented against website fingerprinting. We show that these
defenses are effective – the attack only attains 10% accuracy in the presence of the
server-side defense. Moreover, they provide significant advantages with respect
to network-level defenses: they are more efficient and easier to implement.

Finally, it was a central part of our work to study the traffic features exploited
by the attack. In particular, we have mapped traffic features to high-level
website characteristics that provide a better intuition of why the attacks are
effective. We have elaborated our insights as guidelines that website maintainers
can implement to protect their sites. Furthermore, we have developed a meta-
learning classifier based on website characteristics that provides a user-friendly
tool to estimate the exposure of sites to the attack. The Freedom of the Press
has implemented our guidelines on SecureDrop, their whistle-blowing platform.

This thesis has contributed to define the threat that website fingerprinting
poses to the privacy of web users by improving the accuracy of current
evaluation methods, exploring the attack surface that website fingerprinting
enables, and developing and testing countermeasures against it. As a result of
this, our research has set in motion the implementation of defenses to protect
Internet users against website fingerprinting in real-world systems such as Tor,
SecureDrop, Google, Cloudflare, and Mozilla.

i
i

i
i

i
i

i
i

Beknopte samenvatting

Website fingerprinting is een verzameling van netwerkanalysetechnieken waarmee
een lokale afluisteraar kan afleiden welke webpagina’s een gebruiker bezoekt
via een versleuteld kanaal. Deze technieken gebruiken classificatie op basis van
machinaal leren om te profiteren van eigenschappen van metagegevens van het
netwerkverkeer, zoals de lengte en timing van netwerkpakketten. Van website
fingerprinting is aangetoond dat het de privacy ondermijnt die geboden wordt
door privacybevorderende technologieën, zoals HTTPS, versleutelde proxy’s en
VPN’s, en zelfs anonieme communicatienetwerken zoals Tor.

Dit proefschrift bundelt een reeks studies over de methodologie die gebruikt
wordt om de effectiviteit van website fingerprinting technieken te evalueren.
De overkoepelende bijdrage van deze studies is dat ze de evaluatie van website
fingerprinting technieken systematiseren, wat een accurate beoordeling van
de performantie van website fingerprinting aanvallen toelaat, en bijgevolg de
ontwikkeling van tegenmaatregelen om ze te verhinderen informeert.

Onze eerste stap was het beoordelen van bestaand werk en het in vraag stellen
van aannames in de evaluatiemethodes van bestaande website fingerprinting
aanvallen. We argumenteren dat zulke aannames niet noodzakelijk gelden in
realiteit: het zijn vereenvoudigingen, gemaakt in een proefomgeving, die niet
noodzakelijk van toepassing zijn bij een uitrol in de echte wereld. We beoordelen
de impact van deze aannames op de effectiviteit van de aanvallen en tonen aan
dat het succes van de aanval aanzienlijk afneemt als de aannames niet gelden.

We identificeren vooroordelen in de methoden die eerder werk gebruikt om
de prestatie van een aanval te evalueren. Ten eerste tonen we aan dat zulke
evaluaties het effect van de base rate van de website op hun meting van de
voorspellingsfout over het hoofd zien. Ten tweede meet eerder werk enkel de
centrale tendens van classificatieperformantie, ondanks zijn hoge variantie over
verschillende websites. We kwantificeren het effect van zulke vooroordelen en

vii

i
i

i
i

i
i

i
i

viii BEKNOPTE SAMENVATTING

concluderen dat ze de visie op de effectiviteit van de aanval scheeftrekken,
waardoor het succes van de tegenstander in de praktijk wordt overschat.

Daarenboven hebben we het bedreigingsmodel onderzocht dat gebruikt wordt
in eerdere studies. Hierbij hebben we verschillende varianten beschouwd om
nieuwe bedreigingen te ontdekken die mogelijk gemaakt worden door website
fingerprinting technieken. Ten eerste laten we zien hoe website fingerprinting
gebruikt kan worden vanuit Tor middenknopen om kwetsbare doelwitten te
vinden en de populariteit van Tor onion-diensten te meten. Ten tweede tonen
we aan dat website fingerprinting doeltreffend is tegen DNS over HTTPS, een
gestandaardiseerd protocol om DNS te versleutelen dat momenteel op grote
schaal geadopteerd wordt door providers zoals Google en Cloudflare.

Wat het ontwikkelen van verdedigingsmechanismen betreft, hebben we de
resultaten uit bovenstaande onderzoeken toegepast om een lichtgewicht
verdedigingsmechanisme op netwerkniveau te ontwikkelen dat latency overhead
in de communicatie elimineert. We hebben dit verdedigingsmechanisme
gespecifieerd voor Tor en geëvalueerd in realistische scenario’s. Uit onze
evaluatie blijkt dat het verdedigingsmechanisme voldoende effectief is in zulke
scenario’s, de nauwkeurigheid van de aanval neemt af van 90% tot 20%. Deze
studie heeft bijgedragen aan de implementatie van een veralgemening van dit
verdedigingsmechanisme in Tor.

We ontwerpen twee nieuwe verdedigingsmechanismen op de applicatielaag: één
als browser add-on, en een andere op de server. Deze laatste is de eerste
tegenmaatregel tegen website fingerprinting die geïmplementeerd is op de server.
We tonen aan dat deze verdedigingsmechanismen doeltreffend zijn – de aanval
bereikt slechts 10% nauwkeurigheid in de aanwezigheid van ons server-side
verdedigingsmechanisme. Bovendien bieden ze aanzienlijke voordelen tegenover
netwerk-niveau verdedigingsmechanismen: ze zijn efficiënter en eenvoudiger te
implementeren.

Ten slotte was een centraal onderdeel van ons werk het bestuderen van
eigenschappen van netwerkverkeer die benut worden door de aanval. Meer
specifiek hebben we deze netwerkverkeerseigenschappen gemapt op high-level
website-eigenschappen die ons een betere intuïtie verschaffen over waarom de
aanvallen effectief zijn. We hebben onze inzichten uitgewerkt als richtlijnen
die websitebeheerders kunnen implementeren om hun sites te beschermen.
Bovendien hebben we een meta-lerend classificatie-algoritme ontwikkeld,
gebaseerd op website-eigenschappen, dat ons een gebruiksvriendelijke tool
verschaft om de blootstelling van sites aan de aanval in te schatten. Freedom
of the Press heeft onze richtlijnen geïmplementeerd op SecureDrop, hun
klokkenluidersplatform.

i
i

i
i

i
i

i
i

BEKNOPTE SAMENVATTING ix

Dit proefschrift heeft bijgedragen aan het definiëren van de bedreiging die website
fingerprinting vormt voor de privacy van internetgebruikers. Ten eerste door de
nauwkeurigheid van de huidige evaluatiemethoden te verbeteren, ten tweede door
het aanvalsoppervlak te onderzoeken dat mogelijk gemaakt wordt door website
fingerprinting en ten slotte door het ontwerpen en testen van tegenmaatregelen.
Daardoor heeft ons onderzoek de implementatie gestart van verdedigingsme-
chanismen om internetgebruikers te beschermen tegen website fingerprinting
in reële systemen zoals Tor, SecureDrop, Google, Cloudflare en Mozilla.

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Contents

Abstract v

Contents xi

List of Figures xix

List of Tables xxiii

List of Abbreviations xxv

I Design and Evaluation of Website Fingerprinting
Techniques 1

1 Introduction 3

1.1 Summary of contributions . 4

1.2 Other contributions . 7

1.3 Structure . 9

2 Preliminaries 11

2.1 The Onion Router (Tor) . 12

2.1.1 Tor Browser . 15

2.1.2 Tor Onion services . 16

xi

i
i

i
i

i
i

i
i

xii CONTENTS

2.2 Threat Model . 19

2.2.1 Research assumptions 19

2.3 Statistical classification . 21

2.3.1 Model selection . 24

2.3.2 Prediction error . 26

2.3.3 The base rate fallacy . 28

2.4 Website fingerprinting . 29

2.4.1 Attacks . 30

2.4.2 Defenses . 31

3 Contributions 35

3.1 Realistic evaluation of WF techniques 35

3.1.1 The impact of the base rate fallacy 38

3.1.2 Disparity of results not captured by averages 38

3.2 Identification and assessment of new threats 39

3.2.1 Middle-node WF adversaries 39

3.2.2 DNS-fingerprinting adversary 41

3.3 Engineering and analysis of traffic features 43

3.4 Design and development of defenses 44

3.4.1 WTF-PAD . 44

3.4.2 ALPaCA and LLaMA 45

4 Conclusion and Future Work 49

4.1 Conclusion . 49

4.2 Future work . 50

Bibliography 60

i
i

i
i

i
i

i
i

CONTENTS xiii

II Publications 61

List of Publications 63

A Critical Evaluation of Website Fingerprinting Attacks 67

1 Introduction . 69

2 Website Fingerprinting . 72

3 Model . 72

3.1 Assumptions . 73

4 Evaluation . 76

4.1 Datasets . 76

4.2 Data collection . 77

4.3 Methodology . 77

4.4 Time . 80

4.5 Multitab browsing . 81

4.6 Tor Browser Bundle versions 83

4.7 Network . 85

4.8 The importance of false positives 85

5 Classify-Verify . 90

5.1 Evaluation and result 91

6 Modeling the adversary’s cost 92

7 Conclusion and future work . 94

References . 95

A Appendices . 99

A.1 List of used crawls . 99

Toward an Efficient Website Fingerprinting Defense 101

1 Introduction . 103

i
i

i
i

i
i

i
i

xiv CONTENTS

2 Website Fingerprinting (WF) 105

2.1 Defenses . 106

3 Adaptive Padding . 107

3.1 Design Overview . 108

3.2 WTF-PAD . 110

3.3 Inter-arrival time distributions 111

3.4 Tuning mechanism . 112

4 Evaluation . 113

4.1 Data . 114

4.2 Methodology . 114

4.3 Results . 115

5 Realistic Scenarios . 116

5.1 Open-world evaluation 116

5.2 Multi-tab evaluation . 119

6 Discussion and future work . 120

7 Conclusion . 121

References . 121

A Appendices . 124

A.1 WTF-PAD Histograms 124

Website Fingerprinting Defenses at the Application Layer 127

1 Introduction . 129

2 Threat model . 131

3 Related work . 133

3.1 Attacks . 134

3.2 Defenses . 134

4 Defenses . 137

i
i

i
i

i
i

i
i

CONTENTS xv

4.1 ALPaCA . 137

4.2 LLaMA . 144

5 Methodology . 146

5.1 Data collection . 146

5.2 Data analysis . 147

6 Evaluation . 149

6.1 P-ALPaCA & D-ALPaCA evaluation 149

6.2 LLaMA evaluation . 153

7 Discussion and future work . 154

8 Conclusion . 156

References . 157

A Appendices . 160

A.1 Onion service target experiments 160

B KDE distributions . 162

How Unique is your Onion? An Analysis of the Fingerprintability of
Tor Onion Services 165

1 Introduction . 167

2 Background and related work 171

2.1 Attacks against Tor . 171

2.2 State-of-the-art attacks 173

2.3 Feature analysis for website fingerprinting 174

2.4 Website fingerprinting defenses 174

3 Data collection and processing 175

3.1 Processing crawl data 176

4 Analysis of website classification errors 177

4.1 Classifier accuracy . 177

4.2 Classifier variance . 178

i
i

i
i

i
i

i
i

xvi CONTENTS

4.3 Comparison of website classification errors 179

4.4 Ensemble classifier . 181

4.5 Sources of classification error 183

4.6 Confusion graph . 184

5 Network-level feature analysis 186

5.1 Methodology . 187

5.2 Network-level feature results 189

6 Site-level feature analysis . 191

6.1 Methodology . 191

6.2 Results . 192

7 Implications for Onion service design 194

8 Limitations and future work . 196

9 Conclusion . 198

References . 198

A Appendices . 202

A.1 Site level features . 202

A.2 Confusion Graph for CUMUL 203

Inside Job: Applying Traffic Analysis to Measure Tor from Within 205

1 Introduction . 207

2 Background . 209

2.1 Tor . 209

2.2 Onion Service protocol 210

2.3 Stream isolation . 211

2.4 Traffic fingerprinting . 212

3 Requirements and ethical research 213

3.1 Requirements . 213

i
i

i
i

i
i

i
i

CONTENTS xvii

3.2 Ethical Considerations 214

4 Advantages of the middle of the path 214

4.1 Exit . 214

4.2 Guard . 215

4.3 Middle . 215

5 Circuit purpose and position fingerprinting 216

5.1 Methodology . 217

5.2 Feature extraction . 219

5.3 Training . 221

5.4 Results . 222

6 Onion Service fingerprinting . 222

6.1 Evaluating website fingerprinting 223

6.2 Methodology . 224

6.3 Ethics . 226

6.4 Results . 227

6.5 Precision is in the detail 232

7 Onion Service popularity measurement 234

7.1 Measurement goals and methodology 234

7.2 Measurement tools . 235

7.3 PrivCount deployment 236

7.4 Research ethics and user safety 238

7.5 Results . 239

7.6 Discussion . 243

8 Related work . 243

8.1 Tor website fingerprinting attacks 243

8.2 Tor website fingerprinting defenses 244

8.3 Onion site enumeration 244

i
i

i
i

i
i

i
i

xviii CONTENTS

9 Conclusion . 245

9.1 Lessons learned . 245

9.2 Future work . 246

References . 246

Does encrypted DNS imply Privacy? A Traffic Analysis Perspective 251

1 Introduction . 253

2 Background and related work 255

3 Problem statement . 257

4 Data collection . 259

5 Website fingerprinting through DNS 261

5.1 DNS traffic fingerprinting 262

5.2 Evaluating the n-grams features 264

5.3 DNS Fingerprinting Robustness 268

6 DNS defenses against fingerprinting 274

7 DNS encryption and censorship 276

7.1 Uniqueness of DoH traces 277

7.2 Censor DNS-blocking strategy 279

8 Conclusions . 281

References . 282

A Appendices . 288

A.1 Performance metrics. 288

A.2 Estimation of probabilities 288

A.3 Extra results on attack robustness 291

A.4 Confusion graphs . 292

A.5 Survivors and easy preys 294

Curriculum 299

i
i

i
i

i
i

i
i

List of Figures

I Design and Evaluation of Website Fingerprinting
Techniques 1

2.1 Distinguishing pages by resource size. 11

2.2 The onion routing protocol. 13

2.3 Timeline of WF attacks. 15

2.4 The Tor Onion Service protocol. 17

2.5 WF threat model in Tor. 19

2.6 Projection of the instances of two websites over two features. . 23

2.7 Training and testing (deployment) of a WF classifier. 24

2.8 The ROC curve space. 27

2.9 Visual representation of the base rate fallacy. 29

2.10 Model for network-level defenses. 32

3.1 Summary of the evaluation of variables that impact attack accuracy. 37

3.2 WF threat model with an adversary who controls middle nodes. 39

3.3 Projection over two features of the one-class classification of the
onion service of an online social network (SNS). 40

3.4 Performance of the one-class classifier for different base rates. . 40

xix

i
i

i
i

i
i

i
i

xx LIST OF FIGURES

3.5 Adversary who applies WF on encrypted DNS traffic for
monitoring or censoring. 41

3.6 Conditional entropy for different sizes of the world. 42

3.7 Histograms of domain name lengths and fourth TLS record lengths. 43

3.8 Application-level padding illustration. 46

II Publications 62

A Critical Evaluation of Website Fingerprinting Attacks 67

2 WF Non-targeted attacks in Tor. 70

1 The basic WF targeted attack in Tor. 73

3 Google’s homepage variance. 74

4 Staleness of our data over time. 80

5 Average accuracies of existing WF classifiers. 82

6 BDR in a uniformly distributed open-world. 87

7 Evaluation of the BDR in an open-world with different priors. . 88

8 Estimated probability scores of TPs and FPs in an open-world. 90

Toward an Efficient Website Fingerprinting Defense 101

1 The WF adversary model considering Tor bridges. 105

2 AP’s state machine. 109

3 Histogram of the inter-arrival times. 111

4 Histogram of times between consecutive bursts for incoming traffic.113

5 Average accuracy versus median bandwidth overhead ratio. . . 115

6 ROC curves for k-NN. 117

7 Performance of the k-NN classifier. 118

8 Precision-Recall curves of WTF-PAD. 118

i
i

i
i

i
i

i
i

LIST OF FIGURES xxi

9 Example of WTF-PAD histograms. 125

Website Fingerprinting Defenses at the Application Layer 127

1 WF threat model in the onion space. 132

2 Graphical representation of ALPaCA’s operation. 141

3 Graphical representation of the LLaMA’s operation. 146

4 CDF of the HTTP response size. 147

5 CDF of the HTTP request size. 148

6 Boxplot of the HTTP request and response sizes. 148

7 KDE distribution of the number of objects. 163

8 KDE distribution of the HTML sizes. 164

9 KDE distribution of the object sizes. 164

How Unique is your Onion? An Analysis of the Fingerprintability of
Tor Onion Services 165

1 WF threat model for onion services. 172

2 Venn diagram of errors. 180

3 Venn diagram of errors by coinciding guess. 181

4 F1 score histograms for each classifier. 182

5 Median of total incoming packet size for misclassified instances. 183

6 Density plot for absolute value of Z-score distribution of total
incoming packet size. 185

7 Web page vs fingerprintability. 188

8 Most important features by information gain. 193

9 Distribution of sizes for the most and least fingerprintable sites. 194

10 Confusion graph for CUMUL. 203

Inside Job: Applying Traffic Analysis to Measure Tor from Within 205

1 Circuits built and relays used in an onion service connection. . . 211

i
i

i
i

i
i

i
i

xxii LIST OF FIGURES

2 Threat model of a middle-node WF adversary. 214

3 Probability of a compromised circuit. 216

4 Sequence diagram of Tor’s circuit establishment protocol for an
onion service connection. 220

5 Tor cells direction flow. 220

6 ROC curve for the middle-node clssifier. 230

7 Projection over two CUMUL features of the one-class classifier. . 231

8 One-class classifier performance in the open world. 232

9 Histogram of confused sites. 233

Does encrypted DNS imply Privacy? A Traffic Analysis Perspective 251

1 Graphical representation a DNS resolution. 258

2 Performance per class in LOC1. 265

3 Precision-Recall ROC curve of the open world. 267

4 Top 15 most important features. 271

5 CDF of the per-class mean F1-Score. 274

6 Total volume of traffic with and without countermeasures. . . . 276

7 Conditional entropy given partial observations of DoH traces. . 278

8 Histograms for domain name and fourth-packet lengths. 279

9 Conditional entropy for pairs of sites. 280

10 Distribution of user’s sent TLS record sizes in platform experiment.291

11 Confusion graph for filtered misclassifications in LOC1. 293

12 Confusion graph for the misclassifications in Tor. 293

13 Confusion graph for all misclassifications in LOC1. 295

i
i

i
i

i
i

i
i

List of Tables

I Design and Evaluation of Website Fingerprinting
Techniques 1

2.1 Summary of attack evaluations. 32

II Publications 62

A Critical Evaluation of Website Fingerprinting Attacks 67

1 Assumptions and references to their papers. 75

2 ALAD dataset statistics . 76

3 Classifiers used for the evaluation. 78

4 Description of classification parameters. 79

5 Average accuracies of classsifier W. 82

6 Accuracy for different TBB versions. 84

7 Accuracy for different entry guard configurations. 84

8 Accuracy for different network locations. 85

9 TPR and FPR for three different users. 89

10 Classify-Verify result on the ALAD users. 92

xxiii

i
i

i
i

i
i

i
i

xxiv LIST OF TABLES

11 Complete list of crawls. 99

Toward an Efficient Website Fingerprinting Defense 101

1 Performance and security comparison among link-padding
defenses in a closed world. 116

2 TPR for protected and unprotected traces. 119

3 TPR with respect to each traffic type. 120

Website Fingerprinting Defenses at the Application Layer 127

1 Padding mechanisms by content type. 139

2 P-ALPaCA & D-ALPaCA latency and bandwidth overheads. . 149

3 Closed world classification protected by ALPaCA. 151

4 Open world classification protected by the server-side defenses. 152

5 Closed world classification defended by LLaMA. 154

6 Latency and bandwidth overheads of LLaMA. 154

7 Facebook experiment latency and bandwidth overheads. 161

8 Closed world classification for .onion sites morphed to Face-
book’s .onion site. 162

9 Open world classification for .onion sites morphed to Facebook’s
.onion site. 162

How Unique is your Onion? An Analysis of the Fingerprintability of
Tor Onion Services 165

1 Closed world classification results. 178

2 Top-five misclassified onion sites. 179

3 Network-level feature variance analysis for CUMUL. 189

4 Network-level feature analysis for kFP method. 190

5 Differences in the most and least fingerprintable sites. 193

6 Site-level features and statistics. 202

i
i

i
i

i
i

i
i

LIST OF TABLES xxv

Inside Job: Applying Traffic Analysis to Measure Tor from Within 205

1 10-fold cross-validated circuit classification results. 222

2 Most important circuit classification features. 223

3 10-fold cross-validated for top attacks on client-side traces. . . 228

4 10-fold cross-validated accuracies on middle-node traces. 229

5 Daily action bounds for PrivCount deployment. 237

6 Combined positional relay bandwidth. 238

7 Results for direct measurement of Onion Service protocol. . . . 240

8 Results for measurement of Onion Service classifier detection. . . 241

9 Likely Onion Service popularity. 242

Does encrypted DNS imply Privacy? A Traffic Analysis Perspective 251

1 Overview of datasets. 260

2 Classifier performance for LOC1 dataset. 265

3 Classifier performance for different number of samples. 266

4 F1-Score of the n-grams and k-Fingerprinting features. 268

5 Staleness of the DoH data. 269

6 Robustness across different configurations. 270

7 Classification results for countermeasures. 276

8 Robustness of classifier for different resolvers. 291

9 Performance in different platforms. 291

10 Improvement in cross platform performance. 292

11 Performance when training on different client configurations. . 292

12 Top-10 with highest-mean and lowest-variance F1-Score 294

13 Top-10 sites with lowest-mean and lowest-variance F1-Score . . 294

14 Top-10 sites with highest-variance F1-Score 294

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

List of Abbreviations

ALPaCA Application Layer Padding Concerns Adversaries.

API Application Programming Interface.

AS Autonomous System.

CDN Content Delivery Network.

CMS Content Management System.

CSS Cascaded Style Sheets.

DNS Domain Name System.

FPR False Positive Rate.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

IP Internet Protocol.

ISP Internet Service Provider.

LLaMA Lightweight application-Layer Masquerading Add-on.

SVM Support Vector Machine.

TCP Transmission Control Protocol.

xxvii

i
i

i
i

i
i

i
i

xxviii LIST OF ABBREVIATIONS

TPR True Positive Rate.

VM Virtual Machine.

VPN Virtual Private Network.

WF Website Fingerprinting.

WTF-PAD Website Traffic Fingerprinting Protection with Adaptive Padding
Defense.

i
i

i
i

i
i

i
i

Part I

Design and Evaluation of
Website Fingerprinting

Techniques

1

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Chapter 1

Introduction

The widespread adoption of the Internet and the applications that it supports
has raised unprecedented privacy concerns. With more than 50% of the world
population connected to it [75], the Internet is not only the preferred medium for
most electronic communication, but it has also enabled new forms of interaction,
fundamentally changing our society and the way we communicate. Yet, despite
our society’s dependency on the Internet, the technologies that compose it are
still vulnerable to a wide range of privacy threats.

One such threat stems from the analysis of communications metadata, also
known as traffic analysis. Metadata, such as timing and volume of messages,
can compromise private information of the communication, even if the messages
have been encrypted. Studies have shown that metadata leak information about:
VoIP conversations [81], the passwords of SSH sessions [70], or the identity of
devices across different networks [12]. Therefore, traffic analysis undermines
the confidentiality properties provided by the use of encryption.

As data packets travel through the Internet, their metadata are susceptible
to inspection by a wide range of entities, from local network eavesdroppers to
infrastructure providers and governments. The “Snowden revelations” uncovered
governmental intelligence-gathering programs that indiscriminately extract and
process Internet metadata [3], and go as far as to tap the submarine cables
that funnel most of the world’s Internet communications [2]. The potential
application of these programs for surveillance raises serious privacy concerns.

Anonymous communications systems strive to protect against traffic analysis
from powerful adversaries such as the ones above. For instance, mix [16]
and onion routing [72] networks hide some of the metadata from network

3

i
i

i
i

i
i

i
i

4 INTRODUCTION

eavesdroppers to provide anonymity at the Internet layer. Tor is the most
widely used onion routing network as, unlike mixes, it does not add delay to
communication, allowing for interactive applications such as web browsing [21].
However, not mixing the traffic comes at a cost in privacy; due to its low-latency
constraints, Tor is more vulnerable to traffic analysis than mix networks [52].

In particular, several studies have shown that Tor’s anonymity properties are
compromised by a traffic analysis technique known as website fingerprinting
(WF). WF allows a passive and local adversary to identify the web resources
being accessed by Web users. This technique exploits patterns that are
observable in the metadata of encrypted traffic and are unique to each specific
web resource. Prior work has shown that WF is effective in identifying web
resources being accessed over HTTPS [17, 49], SSH [43], VPNs [29], web
proxies [30,71], and even the Tor network [15,57].

The goal of this thesis is twofold: first, to precisely assess the threat that WF
techniques pose for Web users; and, second, to develop countermeasures to
protect web users against WF attacks. We have focused on WF in the context of
Tor, hence in most of our work we have studied WF attacks applied to Tor and
developed countermeasures specifically designed for it. However, our analysis
is not restricted to Tor and also includes other privacy enhancing technologies
such as HTTPS and encrypted DNS.

In order to achieve these goals, we explore the WF threat model, considering
variations of the threat model found in the literature. This allows us to uncover
new threats and thus understand in depth the impact of this attack. In addition,
we critically examine evaluations of WF techniques performed by prior work,
exposing biases in their methodology and suggesting methods to mitigate
such biases, in order to more accurately determine the effectiveness of website
fingerprinting techniques in practice.

1.1 Summary of contributions

The overarching contribution of this work is to provide a more rigorous modeling
and evaluation of WF techniques, which is crucial to determine the practical
effectiveness of the attacks and, consequently, inform the design of defenses
against them. The outcome of this work has had impact on real-world privacy-
enhancing technologies such as Tor. Our work has raised awareness of the WF
problem in the academic community and has spurred research in the field, moti-
vating several follow-up studies. Moreover, some of the contributions of our work
apply to other fields where traffic analysis is used, such as intrusion detection
systems and censorship, which benefit from some of these contributions.

i
i

i
i

i
i

i
i

SUMMARY OF CONTRIBUTIONS 5

The following is a summary of the contributions of this thesis:

Realistic evaluations of WF techniques. We critically review evaluations
of WF attacks in prior work and identify unrealistic assumptions in their
methodology [35]. We experimentally assess the impact of such assumptions
on the effectiveness of the attack. Similarly, we identify flaws in the evaluation
methodology that introduce a bias in the estimations of the attack’s success
rate [35, 55]. We propose new evaluation methods that allow to detect and
assess such biases and incorporate them in the evaluation methodology [36, 68].

Our evaluations provide a more realistic view of the attacks which is paramount
for the development of future countermeasures: having a well-defined bound of
the success rate of the attack allows defenses to optimize resources accordingly.
In fact, our results show that previous evaluations had overestimated the attack’s
average success rate in practice, implying that, in general, adequate defenses
could be achieved at a lower cost than previously thought.

I am the main contributor of the work on the realistic evaluation of WF
techniques. This work has been published in CCS’14 [35], CCS’17 [55] and
ESORICS’16 [36], and submitted to USENIX’20 [68].

Identification and assessment of new threats. We explore the WF threat
model by discovering attacks enabled by WF that had not yet been considered
in the literature [32, 68]. In particular, we study the use of WF to identify Tor
Onion Services [19, 32, 55], to select potential targets from strategic vantage
points [32], to measure the popularity of onion services [32], and to deploy
real-time web censorship in encrypted DNS and HTTPS connections [68]. We
developed the attacks and the methodology to study the effectiveness of WF
techniques in such scenarios.

Our work unveils attack vectors enabled by WF techniques and determines the
severity of such attacks. Part of the attack surface can be tackled by defenses
that protect against WF in the standard threat model, but some of the attacks
require standalone countermeasures. We have responsibly disclosed our findings
to service providers that are vulnerable to such attacks.

The threats that we uncovered for onion services were studied in our work
presented in NDSS’18 [32]. The work on applying fingerprinting techniques to
encrypted DNS traffic is under submission to USENIX’20. I am a principal
author and made substantial contribution to both publications.

Engineering and analysis of traffic features. The traffic features that
WF exploits are a key component of WF techniques. A transversal contribution
of our work has been to advance the methodology to select such features. One

i
i

i
i

i
i

i
i

6 INTRODUCTION

of our first contributions on this line of work is a classifier-independent feature
analysis of WF techniques that allows to map high-level website characteristics,
such as the presence of advertisements or tracking scripts, with low-level traffic
features, such as the timing and size of network packets [55]. Based on the results
of such analysis we derive design guidelines that can help website maintainers
protect their users against WF [55].

Freedom of the Press Foundation engineers modified the SecureDrop webpage
template to implement some of our recommendations.

In addition, we designed a meta-classifier that can predict the vulnerability of
a website to WF only based on the aforementioned high-level characteristics.
Such method could be used by website developers to estimate the exposure of
their websites to the attack without having to collect network traffic and train
a classifier.

Finally, we propose an information-theoretic framework to evaluate the feasibility
of WF for the purpose of censorship on encrypted DNS traffic. This framework
provides an upper bound for the performance of any WF attack that is
independent of the specific classifier or features that the attacker uses [68].

The work that has contributed to the engineering and analysis of traffic
features has been published in CCS’17 [55], NDSS’18 [32], and submitted to
USENIX’20 [68]. I am the main contributor of the analysis of variance in
classification error presented in [55] and the entropy analysis in [68]. Moreover,
I have developed the feature sets presented in [32,68].

Novel and practical defenses against WF attacks. First, we have
proposed WTF-PAD [36], a countermeasure that has been specifically designed
to be implemented in Tor. WTF-PAD is based on Adaptive Padding [67], a
network-level traffic analysis countermeasure that minimizes latency added by
cover traffic. Such low latency performance is specially suited for low-latency
anonymous communications systems such as Tor. We have adapted it to protect
Tor against WF and evaluated its effectiveness in realistic scenarios.

Second, we have proposed two application-level defenses [19]. We argue that
countermeasures that operate at the application layer have the advantage of
having access to the latent features that WF exploits, namely, the sizes of web
resources that are observed indirectly from the size of network packets. This
approach offers defense strategies that are not possible at the network layer.
Within this work, we proposed a lightweight client-side countermeasure and
implemented, to the best of our knowledge, the first server-side defense against
WF, having Tor onion services in mind as the main use-case.

i
i

i
i

i
i

i
i

OTHER CONTRIBUTIONS 7

Our work has contributed to the implementation of a general framework for
the development of traffic analysis defenses in Tor [47]. Furthermore, we have
collaborated with the Freedom of the Press Foundation to implement a prototype
of our server-side defense to be used in their SecureDrop platform [1,6].

The work on WTF-PAD is published in ESORICS’16 [36] and the application-
level defenses are published in PETS’17 [19]. I am the main contributor of the
work on developing and evaluating WTF-PAD. The work on application-level
defenses is shared among all co-authors. In particular, I had an important role
in the development and evaluation of the client-side defense.

Large-scale automated collection of traffic datasets.

We have collected the largest publicly available datasets of traffic data for Tor
Onion services [19,55] and the largest publicly available dataset for regular web
traffic data [64]. We have also collected the first dataset of encrypted DNS
traffic data for WF [68].

The software to automate data collection for traffic analysis is also part of our
contributions to help systematize large scale WF studies. Our crawlers drive the
Tor Browser in order to simulate the browsing behavior of a Tor user. Moreover,
one of our crawlers collects data from other positions in the circuit while being
compliant with the Tor ethical guidelines [32].

We have engaged in the practice of reproducible research by making all software
and datasets produced during our studies available to other researchers. Other
research groups have used our tools to collect their own datasets [42,54,63]. We
have provided assistance to other researchers in using our software and data,
and we are willing to continue to do so.

I contributed substantially to the implementation of the crawlers and the
collection of datasets in all the studies included in this thesis.

1.2 Other contributions

The work included in this thesis is a selection of the contributions that we
have made to the field of computer security and privacy. We have selected
these articles because they are relevant to the topic of this thesis. However, the
research we have conducted in other areas of the field has influenced the work
presented in this thesis in one way or another. The following is a summary of
these other contributions in reverse chronological order.

i
i

i
i

i
i

i
i

8 INTRODUCTION

Website fingerprinting techniques based on deep learning We have
applied deep learning techniques to develop WF attacks [64,69]. Deep learning
is a family of machine learning classifiers based on multi-layer artificial neural
networks. We evaluated the suitability of different deep learning algorithms for
WF and were able to obtain accuracies of up to 98% under the same conditions
as prior work [69]. We also evaluate an open world of pages and measure the
data distribution shift over time [64]. In addition, we evaluate network-level
WF defenses to the attacks and show that the attacks defeat previous defenses
in the lab, including one of the defenses we propose in the work compiled in
this thesis.

This work was published in NDSS’18 [64] and CCS’18 [69]. I have provided key
ideas in both works and contributed to the writing of the text.

Evaluation of web censorship measurement studies Similarly to how
we challenge assumptions in the methodology to evaluate WF attacks, we have
reviewed the methodology of web censorship measurement studies. We looked
for assumptions these studies made that might have introduced biases in the
results of their measurements. For instance, many of these studies deploy
measurement probes exclusively in university networks such as PlanetLab.
Since university networks are often more privileged than regular home networks,
placing probes only on university networks might have introduced a selection
bias, underestimating the actual scope of censorship.

This work was published in OPERANDI, a workshop co-located with PETS’18 [10].
I contributed to the development and collection of the datasets, and the analysis
of the data.

Profiling of Tor users We have explored profiling techniques enabled by WF
techniques. In this work we considered an adversary who only uses unlabeled
observations. Unlike WF, such data cannot be used to identify the pages that
a user is visiting. We show that these data can be useful to profile users by
clustering them into groups of interest. The adversary can use these groups to
select potential targets, e.g., users that visit uncommon sites and whose profiles
stand out from the crowd. The adversary can then allocate resources to mount
more sophisticated attacks against them. We showed in the paper that, for a
world of 100 sites, an adversary is able to group visits of different users to the
same site with more than 50% success rate without any training data.

This work was published at INFER, a workshop co-located with PETS’16 [24]. I
contributed to the evaluation of the classifier and the writing of the text.

Web tracking measurements. We have performed measurements of the
prevalence of various tracking technologies on the Web [8,9]. First, we developed

i
i

i
i

i
i

i
i

STRUCTURE 9

a tool, that we call “FPDetective” [9], to conduct a large-scale, automated
measurement of the prevalence of browser fingerprinting. We found that more
than 45 of the top 10K most popular sites and 404 out of the top 1M use Flash-
based and JavaScript-based fingerprinting, respectively. We evaluated existing
countermeasures against fingerprinting and uncovered several vulnerabilities in
the Tor Browser.

As a follow-up study we measured the prevalence of advanced tracking
mechanisms such as canvas fingerprinting, cookie syncing and evercookies [8].
We contributed to the development of OpenWPM [4], a measurement toolkit
that we used to automate the visits to the top most popular 100,000 websites
and detect tracking scripts. We found that 5% of the sites were using canvas
fingerprinting, including a popular plugin that was embedded in the official
website of the White House. We also identified the ten top parties involved in
cookie syncing and showed that they can link 40% of the browsing history of a
user. Regarding evercookies, we found that 107 out of the 10,000 most popular
sites use evercookies to respawn HTTP cookies. These studies had considerable
media coverage in several international online newspapers.

The results from the former study were published in CCS’13 [9] and the results
for the latter were published in CCS’14 [8]. For the former study, I contributed
significantly in the development of “FPDetective“ and the collection and analysis
of the data. Regarding the study on advanced fingerprinting techniques, my
main contribution was in testing the implementation of the canvas fingerprinting
detection mechanisms.

Private web search We designed and evaluated an intelligent agent,
implemented as a browser add-on, that proxies queries to a search engine [37–39].
The agent creates different profiles for the same user and manages the user’s
tracking identifiers, such that queries that are related semantically (e.g., they
are part of the same topic) are logged in the same profile. This strategy
decreases the risk of de-anonymization while preserving a certain degree of
search personalization.

This work led to an article in the International Journal of Intelligent Systems [38],
a follow up study in the the International conference on Privacy, Security and
Trust [37], and a publication in a book [39]. I am the main author of this work.

1.3 Structure

This thesis is divided into two parts. Part I begins with an introduction to
the topic and the contributions of the thesis. This introduction is followed

i
i

i
i

i
i

i
i

10 INTRODUCTION

by Chapter 2, that provides the necessary background for the reader to
understand the contributions of the thesis, and Chapter 3, that contextualizes
the contributions of the thesis. Finally, Chapter 4 concludes with a synthesis of
our work and avenues for future research.

Part II comprises the six publications compiled in this thesis:

1. A study that reviews and evaluates assumptions made on previous
evaluations of WF attacks [35].

2. The design and evaluation of a WF defense specifically designed for
Tor [36].

3. A study of application-level defenses for Tor Onion services [19].

4. A per-website feature analysis study of WF attacks on Tor onion
services [55].

5. Study of WF threat models from a middle node [32].

6. A new WF technique that exclusively uses encrypted DNS traffic [68].

i
i

i
i

i
i

i
i

Chapter 2

Preliminaries

Website Fingerprinting (WF) is a traffic analysis attack that allows a network-
level adversary to infer the browsing history of web users by just analysing the
metadata of their encrypted network traffic. The intuition behind the attack
is that differences in embedded content (e.g., distinct images, scripts, styles)
can be measured in the timing and sizes of network packets, even if the packets
have been encrypted or anonymized.

 Web

TLS connection

Site 1 Site 2Client

Adversary

Figure 2.1: Two web pages with resources of different sizes. The sizes of such
resources can be observed in the traffic by analyzing the sizes of network packets.
Such information allows an adversary to distinguish between the pages.

Such differences are unique to each web page and can be distinguished in
the traffic, allowing a network eavesdropper to identify remote content being
accessed by a user.

11

i
i

i
i

i
i

i
i

12 PRELIMINARIES

For example, suppose that a page has an image with an uncommon size; when
we download the image, it will result in an uncommon sequence of packet sizes.
Hence, the observation of packet size sequences will leak information about the
web page. This is illustrated for two different pages in Figure 2.1

The first studies to use packet sizes to identify web pages were published in
the late nineties, showing that although SSL provided confidentiality, it did not
hide the size of page resources [18, 50]. Even though these first studies used
rudimentary techniques and were limited to a dozen web pages, they spurred
research on WF. The studies that followed adopted statistical classifiers to
re-identify page visits under different privacy-enhancing technologies such as:
stripping, encrypted proxies [30, 71], SSH tunnels [43], encrypted VPNs and
anonymous communication systems such as JAP and Tor [29].

In this thesis we have focused on Tor because it is, from the privacy enhancing
technologies listed above, the one that provides stronger privacy guarantees. In
the following section we in introduce Tor and its threat model.

2.1 The Onion Router (Tor)

With more than two million daily users [74], Tor has emerged as the most widely
used anonymous communication system to browse the Web. Tor is an overlay
network, i.e., a network whose nodes are connected over TCP/IP. Tor nodes
are spread all over the world, and are run and maintained by volunteers. Such
volunteer-based model fosters diversity in the network and distributes trust, as
opposed to having a few entities maintaining and controlling the nodes.

Tor is a source-routed anonymous communications system, meaning that clients
choose the path of nodes, or circuit, over which their messages will be routed.
The clients encrypt messages in as many layers as there are nodes in the circuit.
Each layer is encrypted using a key for a different node following the principles
of onion routing [72] (see Figure 2.2), such that, at each hop, only one node
can decrypt and forward the message. This way, each of the nodes learns the
addresses of the adjacent nodes in the circuit, but none of the nodes can learn
both the origin and the destination of the communication – if the circuit has
more than one node.

Threat model
Tor’s original threat model considers local adversaries and explicitly ac-
knowledges that it excludes adversaries who can observe both ends of the
communication [21]. Indeed, if the adversary owns the first and last node in a
circuit, since Tor does not hide timing metadata, the adversary can correlate

i
i

i
i

i
i

i
i

THE ONION ROUTER (TOR) 13

 Tor Network

A
B

DestinationSource

C

(a) A Tor circuit from source to destination.

(b) Each of the keys used to encrypt the layers of a Tor circuit.
Credit: Harrison Neal, distributed under CC-BY-SA-3.0 (unmodi-
fied)

Figure 2.2: The onion routing protocol. The figure above shows the layers of a
circuit from the client to the web server. The figure below provides more detail
about the layers, indicating the key used to encrypt each layer

connections entering the network with connections that leave it by matching
their volume and timing [34]. This is known as end-to-end correlation and
it requires a more powerful adversary than WF. In order to limit end-to-end
correlation, circuits in Tor are by default three-node long. This way the nodes
in the edges of the path cannot directly observe each other’s IP addresses – and
thus trivially locate each other.

Guard nodes
The first node of a circuit is called the guard node. Since guards have direct
communication with the client, Tor puts more trust in them than in the rest of
the circuit. In particular, clients will select a node to be the first node of all
the circuits they build for a period of four months.

The rationale for pinning the guard is to reduce the probability of selecting
a compromised node over time. Tor is constantly building circuits in the
background and uses a different circuit for every domain name that it connects

https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:Onion_diagram.svg
https://commons.wikimedia.org/wiki/File:Onion_diagram.svg

i
i

i
i

i
i

i
i

14 PRELIMINARIES

to. If a client selected a different guard for every circuit, it would rapidly hit a
compromised node [23]. Pinning the guard slows down an adversary that aims
at attacking a specific user. This design decision is based on the assumption
that an adversary whose nodes are always being selected by the same set of
users has diminishing returns. Without that assumption, the adversary would
repeatedly attack a few users, which is not necessarily fair.

Since a low-bandwidth guard negatively affects the performance of a client for a
long time, nodes that are selected as guards must meet a number of requirements
in bandwidth and up time. Once a node satisfies those requirements, it earns
the guard flag, indicating that it can be selected as such.

Tor’s implementation is based on a SOCKS proxy, allowing to route TCP-based
protocols other than HTTP(S). The Tor software is divided into two main
components: the Tor Browser, a “hardened” fork of Firefox; and the onion
router, which routes Tor messages, also known as cells, through the Tor network.
There is an onion router running at the client and each of the relays that
compose the Tor network. The Tor Browser is especially relevant for WF, as it
is the recommended way of accessing websites over Tor. We explain it in more
detail in the next section.

WF in Tor
As described above, Tor is designed to protect its users against adversaries who
own a fraction of nodes in the network and. In particular, it should protect
against passive network eavesdroppers who observe the traffic between the client
and the entry, hence it should protect against WF. However, Tor’s threat model
did not take into account attacks based on machine learning classifiers such
as WF. Research on WF has provided evidence that Tor is, to some degree,
vulnerable to WF attacks.

In Figure 2.3, we depict the progression of WF classifier accuracy over the last
decade. As we see in the figure, even though the first WF attack that was applied
against Tor achieved less than 3% success rate [29], three years later, Panchenko
et al. presented a refined version of the attack with an average 55% success
rate [57]. Panchenko et al.’s work was succeeded by a series of studies that,
with features specifically designed for Tor traffic and more advanced machine
learning techniques, claimed success rates of over 90% [15,28,56,77, 78]. Many
of such studies portray WF as a devastating attack against Tor, completely
defeating Tor’s purpose.

i
i

i
i

i
i

i
i

THE ONION ROUTER (TOR) 15

Figure 2.3: Timeline of WF attacks in the last decade and their reported
accuracies. In 2009 Herrmann et al. propose the first attack against Tor [29].
In 2013, Wang and Goldberg present, in “Improved website fingerprinting on
Tor”, an attack that achieved more than 90% accuracy [78]. In 2018, Rimmer
et al. present the first deep-learning based attack against Tor [64].

2.1.1 Tor Browser

Tor is shipped in a bundle that includes its own browser, a modified version of
Firefox that aims to protect Tor users from a number of different adversaries [61].
Similarly to Firefox’s incognito mode, the Tor Browser does not keep state
across different browser sessions: it wipes out cookies, browsing history, and web
storage on every new session. The Tor browser goes beyond incognito mode in
protecting the privacy of Tor users in many aspects. First, it disables third-party
cookies by default to shrink the tracking surface; second, it comes with a number
of extensions that protect the user from web security vulnerabilities: HTTPS
everywhere preemptively fetches the HTTPS version of visited pages, the Tor
button ensures that traffic is effectively routed through the Tor network, and
NoScript blocks malicious Flash and JavaScript scripts.

Moreover, the Tor Browser implements countermeasures against browser
fingerprinting, which should not be confused with WF. In browser (or device)
fingerprinting a malicious website identifies and tracks users through unique
identifiers that are extracted from the software, hardware and configuration
of the user’s device [7, 9]. The Tor Browser aims at having a single, stable
fingerprint for all Tor users. In particular, it warns against maximizing the
browser window and bundles a set of fonts with the browser that are used in
place of the fonts installed in the operating system.

i
i

i
i

i
i

i
i

16 PRELIMINARIES

Randomized Pipelining.
The Tor Browser also features a WF countermeasure called Randomized
Pipelining (RP) [58]. RP was envisioned as a lightweight defense against
WF [61]. It consists in queuing and randomizing the requests in the HTTP
pipeline. However, RP has been proven to be ineffective against WF attacks in
several evaluations [15,35,78].

2.1.2 Tor Onion services

Tor Onion services, formerly known as hidden services, are special web servers
that can only be accessed over the onion service protocol without having to
reveal their IP address to the users. It thus provides location privacy and
network-level anonymity to the web server towards the users that visit it. Since
onion services are not indexed by regular search engines, they form part of what
is popularly known as the deep web.

A use case of Onion Services is whistle-blowing: since the server is more difficult
to locate geographically, onion services are, to a certain extent, resistant to
compulsion attacks, and thus protect content publishers from retaliation. One
example of this is the Freedom of the Press Foundation’s SecureDrop [5], a web
platform that runs as an onion service, used by popular media outlets such as
The New York Times to protect journalists and their sources. Other popular
examples are WikiLeaks and GlobalLeaks whose official websites are hosted as
onion services.

The Onion service protocol.
The protocol used to contact onion services is different from the one used to
access regular websites. The onion service protocol allows a client and a server
to agree on a Tor node, called Rendezvous Point, without having to rely on IP
addresses. The Rendezvous Point, as its name indicates, acts as a “meeting
point” to which both client and server build a Tor circuit.

First, as illustrated in Figure 2.4, in order to make the server reachable as
an onion service, it builds a number of Tor circuits to be kept reachable as
long as the service is available (1) – although in practice, these circuits rotate
periodically. The exit nodes of these circuits are called Introduction Points,
and their addresses, along with the onion service public key, form the onion
service descriptor. Then, the onion service announces itself to the Tor network
by publishing the descriptor in a database called HS Directory (2), implemented
as a distributed table over several nodes of the network.

Clients identify onion services by their onion addresses. The onion address
is derived from the onion service’s public key and communicated to the user

i
i

i
i

i
i

i
i

THE ONION ROUTER (TOR) 17

 Tor Network

HSDir DB

IP2
RP Onion Service

IP3

PK: IP1-3

PK
Cookie

(3) Query IP addresses
using the PK's fingerprint

(1) Create circuits to
Introduction Points (IP)

(4) Establish ephemeral
connection to Onion Service

through IP and send RP address

Client

(5) Onion Service connect
to RP and authenticates

using the client's one time
secret.

PK IP1-3

RP IP1

Cookie

(2) Publish descriptor: Public
Key (PK) and addresses of IPs

Figure 2.4: The Tor Onion Service protocol. Tor circuits are represented by
double lines.

out-of-band (e.g., published in a public index). When a client connects to the
onion service, she first builds a Tor circuit. The exit node of that circuit is
the Rendezvous Point. Then, she uses the onion address to look up the onion
service’s Introduction Points in the HS Directory (3). Note that connections to
the HS Directory are also done over Tor. Finally, she connects to an Introduction
Point and sends the address of the Rendezvous Point to the onion service (4),
who will build a circuit to it in order to “meet” with the client (5). At this
point, there is a six-hop circuit between the client and the onion service ready
to be used to download web content.

WF in Onion services.
WF attacks have been shown to be effective in identifying visits to onion services.
In fact, even more so than regular websites. This is because, as described above,
the onion service protocol is distinct from Tor’s regular protocol: e.g., a short-
lived connection to an Introduction Point precedes a long-lived connection to
download content. These features were used by Kwon et al. to distinguish visits
to onion services from regular websites with high accuracy. Consequently, an
adversary can focus on onion services or regular websites, depending on their
target. If such target is an onion service, since there are orders of magnitude
fewer onion services than regular websites, identification of onion services is
potentially more effective than regular websites.

Changes in Tor
The Tor Project is a very active community and the Tor software is constantly
evolving. The Tor software has substantially changed since the research included
in this thesis was conducted. Because of these changes, traffic generated by

i
i

i
i

i
i

i
i

18 PRELIMINARIES

new versions of the Tor software is different from the traffic collected for our
experiments. However, we do not expect that all changes will impact the results
of our experiments. In particular, traffic changes that are constant across
websites are likely to not affect the performance of the attacks.

Below we list major changes that might make a difference in our experiments
if they were reproduced on the current versions of Tor and the Tor Browser.
We also argue why we believe they will or will not vary the results of such
experiments.

• Onion Service protocol: since 2017, the onion service protocol has
undergone a major redesign [40]. Some of the new features that next-
gen onion services have are: a more secure directory protocol to prevent
enumeration of available onion services, pinning of onion service guards,
and the option to use a one-hop circuit between Rendezvous Point and
the Onion service server. However, this new version of the protocol
does not protect against traffic analysis attacks that allow to distinguish
onion services from regular websites [41], and to fingerprinting onion
services [19,41,55].

• Redirections to onion services: since 2018, Tor allows content providers
such as Cloudflare and Facebook to use the Alt-Svc HTTP header to
redirect visits through a special onion service proxy that they maintain [65].
This is an example of modification that is not constant across all websites
and that affects fingerprinting: such redirection might introduce distinct
patterns in Tor traffic that allow to distinguish pages that use such header
from others.

• Netflow padding: version 0.3.1.1-alpha implements netflow padding by
creating a flow of padding cells in each direction (every 1.5 to 9.5 seconds).
Even though this might change Tor traffic, we do not expect a substantial
variation in the performance of website fingerprinting attacks.

• Adaptive padding in Tor: since Tor version 0.4.0.5 [47], Tor implements a
framework to develop padding-based countermeasures against traffic anal-
ysis. This framework allows to implement defenses such as WTF-PAD [39],
among others. Since version 0.4.1.1-alpha, onion service circuits are being
padded to look more similar to regular circuits and it is likely that we will
see other padding strategies being implemented in the near future. These
padding strategies significantly impact the results of our experiments.

i
i

i
i

i
i

i
i

THREAT MODEL 19

2.2 Threat Model

The adversary considered in WF is a passive network eavesdropper. This means
that they can listen to the communication but they cannot add, drop or modify
networks packets. The adversary’s visibility is local in the sense that their access
is limited to a strict subset of the links in the network. In particular, in Tor
the adversary is considered to sit in the last mile of the communication: they
either own one or several guards or, simply, they have access to the connection
between the client and the first node of the circuit (see Figure 2.5).

Entities that are in such position and thus could deploy a WF attack are multiple:
local network administrators, ISPs, ASes, and other entities that are part of the
Internet infrastructure. If the user is connecting wirelessly, another potential ad-
versary is an eavesdropper who uses an antenna to intercept the communication.

 Web
 Tor Network

Guard
Web server

Client

Adversary

Figure 2.5: WF threat model in Tor.

2.2.1 Research assumptions

In this section we explain the most common assumptions that prior work makes
on the WF’s threat model.

A closed world of pages.
Early work on WF collected samples only for a small number of websites and
evaluated the attack as if the user had visited one of those websites. By doing so,
they implicitly assume the user will visit only pages the adversary has trained
on, limiting the world of pages to a closed world. This is known in the literature
as the closed-world assumption.

Such assumption is unrealistic as only very powerful adversaries can collect
data for the whole Web [44]; but, even then, it is not known whether a classifier
built with such an amount of classes – the Web size is estimated to be in the
order of billions of pages [48] – would perform as well as in the closed worlds
considered in the literature.

i
i

i
i

i
i

i
i

20 PRELIMINARIES

For this reason, the closed-world assumption has been superseded by the
more realistic open-world assumption, in which the adversary can only train
on a subset of all the existing web pages. In the open world scenario, the
pages the adversary is interested in detecting are known as monitored pages.
Conversely, pages in the complementary of the set of monitored pages are known
as unmonitored pages.

Even though the closed world scenario is still used to benchmark defenses, most
recent research includes evaluations of WF techniques in the open world.

Users only visit homepages.
Another common assumption is that users visit only website homepages. That
is reflected in the data collection methodology of virtually all research on WF,
as datasets used in the evaluation only include data for the homepages of the
websites they consider. This is an unrealistic assumption because users do not
necessarily only visit homepages. In fact, for most information look-ups on
the Internet (e.g., Google searches), users visit inner-pages, i.e., pages in the
website that are not the homepage [54].

Researchers might make this assumption because they lack the resources to
crawl websites in depth. To give a sense of how the data collection would scale
should they considered inner-pages, just in the English Wikipedia there are
almost 6 M pages [33]. Moreover, because of the common use of templates and
CMS (e.g., WordPress) – especially by the least popular websites –, websites
that use the same template tend to have similar web resources. Therefore, it is
likely that these pages would be more prone to be confused by the classifier,
negatively affecting the performance of the attack.

It is worth mentioning that such assumption has been tested by the latest work
by Panchenko et al. who captured trends by gathering URLs from popular
sources such as Google search and Twitter [56]. Their study concludes that WF
attacks do not scale to the size of the Web.

A page visit is clearly delimited in the traffic.
The WF adversary is often assumed to be able to collect a traffic trace for every
website such that the trace solely contains traffic generated by one single visit.
Equivalently, this is often phrased as an assumption on user behavior: users
visit pages sequentially and they do not load the next page until the previous
one has finished loading.

In practice, finding the start and end of a visit is not trivial: users may be
routing other traffic over Tor or simply be browsing with multiple tabs open.
At least for Firefox users, multitab browsing is common [51]. In Tor, traffic
of different tabs is multiplexed in the same TLS connection. Therefore, the

i
i

i
i

i
i

i
i

STATISTICAL CLASSIFICATION 21

adversary cannot use simple protocol filters to separate that traffic from traffic
generated by other tabs.

Recent research shows that this assumption can be overcome by traffic splitting
techniques [80]. This study shows how, with milder assumptions on the overlap
of two consecutive page loads, the adversary can effectively detect their start
and end in the traffic.

Setup replicability.
Characteristics of the client’s environment such as connection properties (e.g.,
bandwidth and latency), geographic location, network type, processes running
in the background, among others, have an effect on network traffic and,
consequently, may have an impact on the accuracy of WF. Since WF researchers
use the same dataset to train and test the classifier, they are assuming that the
adversary is able to replicate the exact environment in which the attack will be
deployed, i.e., the adversary collects data under the exact same conditions as
the victim.

This assumption is unrealistic because, given the vast amount of variables that
might differ between the adversary’s and the victim’s settings, it is unlikely that
they will be exactly the same. Moreover, while some of these variables, such as
connection properties, can be estimated at a given point in time, some others
might not be observable in the traffic, e.g., background applications that do not
generate network traffic.

As we will explain in Chapter 3, in our work we show the implications of such
assumption for the effectiveness of the attack. Even small discrepancies between
the version of the Tor Browser used by the adversary substantially degrade the
performance of the attack [35].

2.3 Statistical classification

In practice, WF techniques are implemented using statistical classifiers. In
this section we give a short introduction to statistical classification and explain
how it is used to implement WF techniques. The summary below is based on
the books “Introduction to Statistical Learning” by Hastie, Tibshirani, and
Friedman [27] and “Learning Theory” by Tewari and Bartlett [73]. We strongly
recommend the avid reader to expand on this summary by looking up the details
in the books.

Generally speaking, the task of classification consists in arranging elements in
groups, or classes, whose members share some characteristics. Classification is

i
i

i
i

i
i

i
i

22 PRELIMINARIES

common practice in science. For instance, biologists have defined three different
classes – species, in biology terminology – of iris flower: setosa, virginica, and
versicolor. The class of an iris flower can be determined by the length and
width of its sepals and petals. However, there is high variance among flowers
that belong to the same class, e.g., setosa’s sepal length ranges between 4.3cm
and 5.8cm, and versicolor’s sepal length ranges between 4.9cm and 7cm. When
we observe a new iris that falls within the intersection of these two ranges, a
reasonable approach is to classify it to the class whose members are most similar.
This, comparing an observation to existing members of a class for classification
purposes, is the key intuition behind statistical classification.

Statistical classification assigns the class a new observation belongs to based on
a set of examples of already-classified elements. More formally, if X is the set of
examples and Y a finite set of possible classes, a statistical classifier, or simply
classifier, is a function f : X → Y such that given an x ∈ X for which the
class is unknown, it returns a guess for x’s class: i.e., ŷ = f(x). Classification
algorithms solve the task of finding an f that minimizes the error between f(x)
and the true class of x, for an arbitrary x. The space of functions that the
classification algorithm searches to choose an f is called hypothesis space. It
is common to overload the term classifier and call the classification algorithm,
simply, classifier.

In machine learning, classification algorithms are part of the supervised learning
family of algorithms, characterized by taking as input a set of observations
that have been labelled. Popular classification algorithms are: Naïve Bayes,
k-Nearest Neighbours, Support Vector Machines (SVM), Random Forests, and
Artificial Neural Networks. All these classification algorithms have been used
for WF. Regression is an example of supervised learning algorithm that does
not solve a classification problem.

In machine learning terminology, an observation is called instance or example
and is typically represented as a vector of features, or attributes, that describe
the observation. Following the notation introduced above, we can represent
the elements in X as vectors: ~x = (x1, . . . , xn) ∈ X, where each xi is a feature
of the instance. In Figure 2.6, we depict a set of instances for two different
websites as represented in R2.

In order to be useful for classification, these features should take different values
for different classes (high inter-class variance) and have similar values for the
same class (low intra-class variance). Knowing whether a feature is relevant or
not requires domain expertise.

In WF, Y is the world of web pages and X are traffic observations of those web
pages, also known as traffic traces. Features are website characteristics based

i
i

i
i

i
i

i
i

STATISTICAL CLASSIFICATION 23

x2 = Number of bursts

x 1
 =

 T
ot

al
 b

yt
es

Website 1

Website 2

Instances

Features

t = (x1,x2) = (500, 20)

y = ax+b

Model

Vectorial representation

Figure 2.6: Projection of the instances of two websites over two features.

on timing and size of network packets such as the total download size in bytes
or the number of bursts (see the axes in Figure 2.6).

From a statistical point of view, classification algorithms assume that there
exists a joint probability distribution on the random variable X × Y that we
denote by PXY . Based on that assumption, observations are samples drawn
from such probability distribution. Then, the classification task can be stated
as: given an x ∈ X for which we do not know its class, find y that maximizes
the following probability: P (X = x | Y = y).

In order to estimate the probabilities P (X = x | Y = y) for all y ∈ Y , the classifi-
cation algorithm uses a large sample of observations that is known as the training
set. Classification algorithms are grouped into two main categories depending
on how they estimate such probabilities: generative, which model the underlying
probability distribution PXY and use it to estimate the conditional distribution;
and discriminative, which model the conditional distribution PX|Y directly.

Generative models have more descriptive power as they model how the training
data was generated and, to classify an observation, answer the question of which
class is more likely to have generated a specific observation. Since they model
the distribution of how data has been generated, they can also be used to
generate new data with the same distribution. However, generative models tend
to be more computationally expensive than discriminative ones. Discriminative
models, on the other hand, do not model how data is generated and tackle
the problem in a more direct way, modeling how classes discriminate the data.
The disadvantage is that discriminative models are more limited in capturing
complex relationships in the data compared to generative ones. Whether the

i
i

i
i

i
i

i
i

24 PRELIMINARIES

 Web

 Web

Adversary

Classification Model

 Tor Network

Guard

 Tor Network

GuardClient

Training

Testing

Figure 2.7: Training and testing (deployment) of a WF classifier.

classification algorithm is generative or discriminative, the resulting classifier f
is often called model because it directly (discriminative approach) or indirectly
(generative approach) models PX|Y .

The development of a classifier can be divided into two phases: training and test-
ing. During training, the algorithm creates the model f based on the training set.
After that, the model can be used to make class predictions for a set of samples
that were not in the training set, known as test set. Testing in this context refers
to the measurement of the model’s prediction error, which we explain more in
detail in the next section. There are often several iterations between training
and testing, in order to tune the parameters of the classification algorithm.

In WF, the adversary captures the traffic traces generated when visiting a
set of pages that are likely to be visited by the user, including pages that the
adversary is interested in identifying (see Figure 2.7). Next, for each page, the
adversary processes the traces and extracts features that may uniquely identify it,
producing a set of feature vectors. Finally, the adversary can deploy the resulting
model and test traffic from an actual visit of a user, matching it to one of the
pages in the dataset and thus finding out which page the user was browsing.

2.3.1 Model selection

Classifier algorithms search the hypothesis space in order to find an f that
minimizes the error on class predictions. Prediction error can be decomposed
into three components: error due to bias, error due to variance, and irreducible
error. Error due to bias refers to error the model incurs when it is not able to
capture the relationship that it is trying to model (e.g., an overly simple model).

i
i

i
i

i
i

i
i

STATISTICAL CLASSIFICATION 25

Error due to variance occurs when the model is capturing noise that is specific
to the training set and thus does not allow it to generalize well (e.g., an overly
complex model). Finally, irreducible error is error that cannot be controlled by
model selection such as measurement error or error intrinsic to the problem.

Bias and variance can be traded by adjusting the complexity of the model:
simple models tend to reduce variance at a cost of higher bias and complex
models tend to increase variance but reduce bias. When a model suffers from
high variance error, we say the model is over-fitted and, conversely, if the model
commits high bias error, we say that the model is under-fitted.

When evaluating a classification algorithm the machine learning engineer strives
for a model that describes well the training data (low bias) but is also able
to classify correctly new observations (low variance). In order to adjust the
bias-variance trade-off, classification algorithms have parameters that constrain
the hypothesis space, resulting in models of varying complexity. The prediction
error of these models must be evaluated to inform the model selection process.
However, since for most learning problems the available data is limited, a
model’s prediction error must be estimated statistically on samples from PXY ,
i.e., error measurements on the sample are extrapolated to the population.

In practice, the most common statistical method to evaluate the prediction error
of a model is cross-validation. Cross-validation is a non-parametric method,
meaning that it does not require assumptions on the underlying distribution
of the data. The key idea behind cross-validation is to hold out a subset of the
labelled dataset for testing. The model is then trained, tuned and validated on
the rest of the data and only evaluated at the end, on the data that was put aside.

In particular, k-fold cross-validation is the variant of cross-validation that is
more often used to evaluate WF classifiers. In k-fold cross-validation, the
dataset is divided into k disjoint sets of equal size. An estimation of the error
is calculated for each of the k sets, holding such set out for testing and using
the rest of the data for training. The final estimation for the prediction error is
the average of the values obtained for the k folds.

The quality of the prediction error estimates vary with respect to the choice of
k. For small values of k, the estimations of bias error are pessimistic because
only a small part of the dataset is used for training – and we would obtain a
less biased model if the whole dataset was used. In contrast, for large k, the
models we train in each iteration are very similar – almost the same set of data
is used to train them – increasing the variance with respect to models that are
trained on other datasets. As a rule of thumb, k = 10 is used in practice for
most purposes.

i
i

i
i

i
i

i
i

26 PRELIMINARIES

2.3.2 Prediction error

In this section we describe the metrics that are used to measure a classifier’s
prediction error. We begin by explaining popular metrics for binary classification
and then we move to metrics for multi-class classification.

In binary classification there are only two classes: the positive class, the class
we are interested in detecting, and the negative class, the complement of the
positive class. Therefore, there are two possible ways in which a model can err:
False Negatives (FN), positive instances that were classified as negative or False
Positives (FP), negative instances that were classified as positive. Likewise,
there are two types of correct predictions: correctly classified positives and
negatives: True Positives (TP) and True Negatives (TN), respectively.

The most popular metrics used to measure WF classifiers in the literature are:

• Accuracy is the simplest metric to measure a classifier’s error and is defined
as the ratio of successful classifications over the total:

Accuracy = TP + TN

TP + TN + FP + FN
.

• False Positive Rate (FPR) is the ratio of errors in the negative class:

FPR = FP

FP + TN
.

• True Positive Rate (TPR), also known as Recall, is the ratio of correctly
classified instances in the positive class:

Recall = TP

TP + FN
.

• Precision is the ratio of correct classifications out of the instances that
were classified as positive:

Precision = TP

TP + FP
.

• The F1-Score is also used as an aggregate metric to sum up Recall and
Precision in a single value. The F1-Score is defined as the harmonic mean
of Recall and Precision:

F1-Score = 2 Precision · Recall
Precision + Recall ,

i
i

i
i

i
i

i
i

STATISTICAL CLASSIFICATION 27

such that if either Precision or Recall are zero the F1-Score also is, and
both Precision and Recall must be high in order to obtain a high F1-Score.

Another common error metric is based on the classifier’s Receiver Operating
Characteristic Curve (ROC curve). Most models for binary classification define
a boundary between the positive and the negative class and output a confidence
score based on the distance from the to-be-classified instance to such boundary.
By setting a discrimination threshold on classifier confidence, one can tune
the strictness of the decision boundary. In most problems there is no clear
separation between the positive and the negative class and tuning the threshold
allows to trade-off between TPs and FPs.

If we vary the value in the range of the discrimination threshold we obtain
a curve, where each point in the curve represents the TPR-FPR trade-off of
a given threshold. In Figure 2.8, we show the space for any of such curves:

Figure 2.8: The ROC curve space. A point in the space represents a trade-off
between TPR and FPR. For instance, point A is FPR=0.3 and TPR=0.65. The
diagonal of the space represents random guessing (e.g., point B). The curve of
the perfect classifier lies on the top-left corner. Points C and C ′ are mirrors
over the classes: the TPR and FPR in C are the TPR and FPR in C ′ for the
negative class. A classifier performs worse in detecting positive instances as
the area under its curve on this space tends to zero. Credit: Indon, distributed
under CC-BY-SA-3.0 (unmodified).

https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:ROC_space.png

i
i

i
i

i
i

i
i

28 PRELIMINARIES

each point in the ROC space represent a pair of TPR and FPR values. A
perfect classifier achieves TPR=1 and FPR=0 and hence would be represented
by a curve that goes along the top-left corner. The points in the diagonal in
the ROC space satisfy TPR=FPR, which is equivalently to assign positives
uniformly at random between positive or negative. The area under the curve
(AUC) measures the performance of the classifier: the larger the area, the less
TPs the classifier has to give up to avoid FPs.

In WF, these metrics are useful in the evaluation of an open-world scenario
where the monitored pages constitute the positive class. In the closed world,
however, each website is a different class, hence Accuracy = Recall = Precision
– because the FP errors of one class are the FNs of another and, therefore, over
all the classes, FP = FN.

2.3.3 The base rate fallacy

Researchers as well as machine learning engineers might fail to accurately assess
the performance that their models will have once they are deployed. These
failures arise from mistakes of different nature such as mistakes in reasoning
and interpretation during the evaluation process. The base rate fallacy is an
example of such mistake that has been thoroughly studied in the literature on
intrusion detection systems [11].

An evaluation suffers from the base rate fallacy when the base rate of the
positive class, i.e., the prior probability of encountering positive instances, is
overlooked or neglected. If the machine learning engineer does not take into
account that the base rate, also known as prior probability, of the positive class
is low, the measurements on prediction error are likely to be overestimated. For
instance, even if a classifier exhibits a high TPR and a low FPR, there can
still be orders of magnitude more FPs than TPs, since the positive class would
account for a small fraction of the instances in the population, in the first place
(see Figure 2.9 for a visual representation of such an imbalance).

The are multiple ways in which the base rate can be overlooked. For instance, the
classification algorithm might not factor the base rate, P (Y) in the estimations
for P (X = x | Y = y); the training sample might not be representative of the
positive class; or, simply, the metrics used to evaluate the model measure an
aspect of classifier performance that is unaffected by the base rate (e.g., Recall).

As opposed to Recall, Precision is a metric that is affected by the base rate
of the positive class. Precision estimates the Bayesian Detection Rate of the
classifier: i.e., the probability of a positive detected by the classifier to actually
be positive. High Bayesian Detection Rate is necessary for a classifier in order

i
i

i
i

i
i

i
i

WEBSITE FINGERPRINTING 29

Figure 2.9: Visual representation of the base rate fallacy. Dots are elements
of the negative class and triangles are elements of the positive class. Triangles
within the large circle are TPs and outside of it are FNs. Dots within the large
circle are FPs and outside are TNs. Even though the TPR is 88% and the FPR
is 5%, Precision is only 10% (the ratio of triangles over dots within the large
circle. This is because the base rate of the positive class (10%) is significantly
smaller than the negative class, hence 88% of positive elements is substantially
less than 5% of elements in the negative class.

to guarantee high confidence on its predictions. However, if Precision is not
reported or if the sample used to measure it is biased, the evaluation might
succumb to the base rate fallacy.

A common practice is to impose the same number of instances for all classes in
the dataset. This is called balancing the dataset. The rationale for balancing the
dataset is that discriminative classification algorithms (e.g., SVMs) oftentimes
fail to create a model for classes that are misrepresented in the data, i.e.,
have a low base rate. It is important to take into account that balancing the
dataset artificially modifies the base rate of the class. This might not be a
problem during the training phase but, during the testing phase, balancing
might overestimate the base rate for the least likely classes, hence falling into
the base rate fallacy.

2.4 Website fingerprinting

In this section we describe related work on WF techniques in detail.

i
i

i
i

i
i

i
i

30 PRELIMINARIES

2.4.1 Attacks

In SSL/TLS, the adversary can usually infer the website by the IP or the domain
name and perform the fingerprinting attack to identify the specific page within
the site that a user visited. The world of pages in this case is orders of magnitude
smaller and, therefore, the attack is much more effective. There are several
papers that have explored this setting for web traffic [17,49] and we were the first
in analysing it for encrypted DNS traffic [68]. In the rest of our work, however, we
have focused on WF attacks against Tor, because they fundamentally undermine
the privacy properties that Tor aims to provide to its users.

The first WF attack against Tor was proposed by Herrmann et al. in 2009. They
used a Multinomial Naïve Bayes classifier trained on the relative frequencies of
packet sizes. The evaluation was performed on a closed world of 775 websites
on which the attack obtained less than 3% success rate. Moreover, the authors
did not evaluate the attack in an open world.

The attack presented by Herrmann et al. was improved by Panchenko et al. a
couple of years later [57]. They presented an SVM with a Radial Basis Function
as kernel and refined the feature set of the attack by including several features
that correlate with the traffic bursts of a web download. Traffic bursts are
sudden peaks in bandwidth usage such as the ones that follow HTTP GET
requests. In order to capture these bursts, Panchenko et al. proposed features
based on the direction of Tor traffic (e.g., from incoming to outgoing and vice
versa). They obtained 55% accuracy on the dataset that Herrmann et al. used.
They were also the first to evaluate WF in an open world; in a world of 5,000
pages where 1,000 of them are monitored pages, their attack achieves 73% TPR
and 0.05% FPR.

In 2012, Cai et al. presented a WF attack against Tor with a substantial increase
in the attack’s success rate [15]. Their attack was also based on an SVM but
used a custom kernel defined by the Damerau-Levenshtein edit distance which
they dubbed DLSVM. Their results show a 70% success rate on a closed world
of 800 websites but they did not evaluate this attack in an open world. Wang
and Goldberg notably improved the accuracy of the DLSVM by using a custom,
weighted edit-distance [78] and achieved 91% success rates for the same number
of websites. They also proposed several Tor-specific techniques to improve
the attack effectiveness against Tor. However, these attacks are prohibitively
expensive as computing the kernels for edit distances becomes computationally
infeasible for large datasets. Wang and Goldberg evaluated theirs and Cai et
al.’s attacks in an open world of 860 unmonitored and 40 unmonitored websites;
both attacks achieved high TPR (87% for Cai et al.’s and 97% for Wang and
Goldberg’s) and “negligible” FPR [78].

i
i

i
i

i
i

i
i

WEBSITE FINGERPRINTING 31

The authors of these last two attacks then worked together to develop a new
attack based on a k-NN classifier [77], hence the attack is known in the WF
community as the “k-NN” attack. The features used by this classifier included
thousands of features obtained from variations of simpler features that had been
proposed in the literature. The classifier used a custom distance that weighs
features in order to minimize the distance between instances that belong to the
same website. The evaluation of the attack shows an outstanding performance:
95% success rate (closed world) on Cai et al’s dataset and 85% TPR and 0.6%
FPR in an open world of 5,000 websites with 100 monitored ones.

Hayes and Danezis presented k-Fingerprinting (k-FP), a novel attack based
on a Random Forest and k-NN classifiers [28]. The random forest is used for
a feature transformation: the leafs of the tree are a new representation of
web instances that is then fed to a k-NN for the actual classification. Their
open-world evaluation was the largest until then: 100,000 websites with 30
monitored ones. The results show 95% success on a 55-site closed world, and
85% TPR and 0.02% FPR in the open world.

Panchenko et al. designed a new feature set based on an SVM whose features
where the cumulative sum of packet sizes [56]. They called it CUMUL and
evaluated it on a realistic dataset collected from diverse sources, such as Twitter
and Google search. Their closed-world evaluation was on 100 websites from
Wang et al.’s dataset and obtained 91.38% on it. For the open world they used
Wang et al.’s dataset and obtained 96.92% TPR and 1.98% FPR.

Finally, in recent years, deep learning techniques have been applied on WF
attacks [64,69]. These techniques have improved the success rate of the attack
several percent points with respect to the attacks based on traditional machine
learning techniques. They also have the advantage of not requiring feature
engineering, as they automatically extract the features from the traffic traces.

A summary of the results of the attacks can be found on Table 2.1.

2.4.2 Defenses

Research on WF has taken the form of an arms race: each attack is followed by
a defense that is shown to protect against it. Initial defenses were inspired by
existing traffic analysis countermeasures such as traffic morphing [82]. Similar
to traffic morphing, defense strategies against WF consist in delaying network
packets and adding new, dummy packets to perturb the traffic features the
attacks exploit. Adding dummy packets is commonly known as cover traffic
or link padding (as opposed to packet padding, which is padding added to
individual packets).

i
i

i
i

i
i

i
i

32 PRELIMINARIES

Table 2.1: The closed-world (CW) size is the number of websites in the dataset.
The open-world (OW) size is the fraction of monitored sites with respect to the
total. For presentation we do not include the number of instances per site in
the datasets.

Attack CW size Acc (%) OW size TPR (%) FPR (%)

Herrmann et al. [29] 775 2.96 NA NA NA
Panchenko et al. [57] 775 55 1,000/5,000 73 0.05
Cai et al. [15] 800 70 40/900 86.9 [78] ∼ 0 [78]
OSAD [78] 800 91 40/900 96.9 ∼ 0
k-NN [77] 800 95 100/5,000 85 0.6
k-FP [28] 55 96 30/100,000 85 0.02
CUMUL [56] 100 91.38 100/5,000 96.92 1.98
Rimmer et al. [64] 100 96 200/400,000 80.25 9.11
Deep FP [69] 95 98.3 95/20,000 96 0.7

 Web
 Tor Network

Guard
Web server

Adversary

Defense
Server

Defense
Client

Figure 2.10: Model for network-level defenses.

Most WF defenses are designed as proxies that transform the traffic in between
two Tor onion routers: the defense’s client intercepts traffic coming from the
client’s onion router and applies the padding, and a defense server interfacing
with one of the Tor relays reverses the padding transformation (see Figure 2.10).
Hence, it is assumed that the defense adds a framing layer of encryption around
the packets it intercepts, so that the adversary cannot pinpoint which packets
are dummy.

Because these defenses are oblivious to the content of the communication, we call
defenses that follow this design network-level defenses, as opposed to application-
level defenses, which operate on application content. Application-level defenses
are specified as running at the application layer, i.e., in the web browser or
the web server. The traffic transformation is thus performed on the actual web
content and it trickles down to the network traffic that the adversary observes.

i
i

i
i

i
i

i
i

WEBSITE FINGERPRINTING 33

The design of network-level defenses abstracts out the defense logic from the rest
of the communications protocol: they have the advantage that can be plugged
into Tor without modifications to the browser, the server or the onion router’s
source code. On the other hand, application-level defenses apply the padding at
a much earlier stage, directly on the origin of the side-channel exploited by WF.
For this reason, application-level defenses can be more precise in how padding
is applied.

In addition, network-level defenses typically require to model the shape of
application traffic as observed at the network layer, in order to generate padding
that follows the same distribution. Application-level defenses eliminate this
requirement, as padding is added at the application and it undergoes the same
low-level transformations as legitimate application content.

Another important advantage of network-level defenses with respect to
application-level ones is that they do not add bandwidth overhead on the
exit node. Since the adversary’s visibility is limited to the link between the
client and the entry guard, padding is only required between the client and the
middle node and, consequently, the defense’s server could remove the padding
at the middle node. Application-level padding necessarily runs end-to-end and
must be removed by the server. This impacts the bandwidth overhead at the
exit position. This is of paramount importance in Tor, as bandwidth in the exit
position is scarce in the Tor network.

The link padding schemes that have been proposed in the literature are diverse.
The following is an overview of the main categories of countermeasure schemes.

Constant-rate padding defenses.
It has long been known that padding individual packets is not sufficient to
protect against WF attacks [22], as the size of a page is one of the most
distinctive features and can only be concealed by link padding. Dyet et al.
proposed BuFLO, a “strawman” defense that pads the communication so that
the resulting stream is constant-rate, i.e., packets have the same size and
the inter-packet time is fixed. The defense resulted prohibitively expensive.
However, to its credit, it was not meant as a practical defense, but rather as an
experiment to prove that coarse-grained features such as the size of the page
leak most of the information exploited by the attacks.

Yet, the straw-man defense motivated other defenses based on constant-rate
padding [13, 14], but their cost in terms of latency and bandwidth overheads
discouraged their deployment in Tor. CS-Buflo and Tamaraw are the most
prominent examples of constant-rate padding based defenses and both aim to
minimize BuFLO’s overheads. Both defenses use similar strategies to reduce
bandwidth overhead: they both propose a stopping condition for padding that

i
i

i
i

i
i

i
i

34 PRELIMINARIES

allows to group websites in anonymity sets depending on their total download
size; Tamaraw suggests to treat incoming and outgoing traffic independently,
since incoming traffic accounts for most of the traffic in the communication; and
CS-BuFLO proposes to adapt the rate in which packets are sent depending on
the use of the channel. Despite high security guarantees, both Tamaraw and CS-
BuFLO incur a high bandwidth and latency overhead: choosing parameters that
minimize bandwidth overhead, Tamaraw and CS-BuFLO reduce attack accuracy
below 50% while exhibiting 200% and 173% latency overhead, respectively. Such
high latency overhead is a major drawback to consider an implementation of
these defenses in Tor.

Super-sequence defenses.
Two defenses have been proposed that attempt to create anonymity sets of
traffic traces [53,77]. The key idea behind these defenses is to cluster website
traffic traces by how similar they are and derive a more general trace that
contains all the traces in the cluster, known as super-sequence. The padding is
added to pages in the cluster so that they all look like the super-sequence trace.
The main drawback for the deployment of these defenses is that they require an
up-to-date database of super-sequences to be distributed to the clients which,
given the fast rate in which pages change, might be expensive to maintain.

Application-level defenses.
The first and only defense implemented by Tor is an application-level defense
called Randomized Pipelining (RP) [58], introduced in the previous chapter.
HTTPOS is another application-level defense that is specified in the browser [45].
HTTPOS modifies the headers of HTTP requests and, similarly to RP, injects
new, dummy requests strategically.

Recent work has proposed a new defense called Walkie-Talkie [80]. This defense
is a hybrid between an application- and network-level defense. Walkie-Talkie
requires modifications in the browser to change the communication mode to
half-duplex. Half-duplex imposes that only one end can send data at a time,
simplifying patterns in traffic and allowing more efficient allocation of padding.
The second step of the defense mechanism is to add padding at the network
layer. However, it is not specified how the client-side of the defense would
coordinate with the server-side to do so.

i
i

i
i

i
i

i
i

Chapter 3

Contributions

In this chapter we contextualize the contributions of the work compiled in this
thesis.

3.1 Realistic evaluation of WF techniques

The attacks presented in early WF studies were received with skepticism by
the Tor community. Mike Perry, a Tor core developer strongly criticised the
research assumptions made by such studies and advised to take their evaluations
with a grain of salt [59]. Some of these assumptions had already been identified
by Herrmann et al. [29], however, how they affected the performance of the
attack in practice was an open question.

Inspired by Mike Perry’s critique, we reproduced the evaluations of early WF
attacks from a critical standpoint [35]. We first reviewed them and compiled
a comprehensive list of assumptions on the evaluation methodology, including
assumptions that were not explicitly acknowledged by the authors or that had
not been identified by prior work. Then, we evaluated the impact of such
assumptions on the attack performance by isolating and varying independent
variables that play a role in the assumption.

For instance, to test the assumption of finding the limits of a page visit in the
traffic, explained in the previous chapter, we choose the overlap of two browser
tabs as the independent variable. Since the adversary cannot distinguish traffic
generated by pages loaded at the same time in different tabs, they cannot deter-

35

i
i

i
i

i
i

i
i

36 CONTRIBUTIONS

mine where each page started and ended. We then measure the performance of
the classifier by varying the overlap of the two tabs and fixing the rest of variables.

The variables we identified and evaluated are:

Time.
Many pages have high-frequency content changes. We show that training data
stale over time. In our results, the accuracy of the attack decreased from 80%
to less than 5% in three months. This forces the adversary to continuously train
the classifier in order to keep the model up-to-date and maintain the same level
of accuracy over time. In the same work, we provide an adversary model that
considers the cost of periodic collection of training data.

Overlap between two tabs.
As described in Chapter 2, a common assumption made in the WF literature
is that users browse pages sequentially and thus it is easy for an adversary to
determine, in the traffic, when a visit to a page starts or ends. We challenge this
assumption by simulating a multi-tab browsing session in our data collection
process. We then apply the classifier on multi-tab data and show how the
classifier breaks completely in that case.

Tor Browser version.
As a particular instance of the replicability assumption described in Chapter 2,
we evaluate a scenario in which the user is using a different browser configuration
to the one the adversary used to collect training data for the attack. We
evaluated different versions of the Tor Browser and different values for a
property in Tor’s configuration. In the worst case, we observe a decrease
in the performance of the attack of over 60% accuracy.

Location and Network.
Similarly, the adversary might have collected the dataset from a different
network or location. We collected data from three different locations with
varying network characteristics. We show that network is another variable that
impacts the accuracy of the attack, to the point that, in our experiments, the
performance of the attack trained on one location and tested in a different
location can decrease more than 60% in accuracy.

Personalization.
Many websites personalize their content to their visitors. In those cases, the
adversary might have to collect data for every personalized version of the page
to maintain attack accuracy. Furthermore, some pages are behind login walls
and thus the adversary is not even able to obtain training data for those. We
show samples of websites that are personalized depending on the date in which

i
i

i
i

i
i

i
i

REALISTIC EVALUATION OF WF TECHNIQUES 37

Figure 3.1: Summary of the evaluation of variables that impact attack accuracy.

the site is visited. We did not evaluate, however, the impact of such variance
on attack accuracy directly.

User behavior.
Lastly, we evaluate how representative the dataset collected to train the attack
is for users. Most of existing evaluations use the Alexa list of most popular
sites for data collection. However, the target user might have a completely
different browsing behavior and tend to visit pages that are not in Alexa. We
evaluate the performance of the attack on a list of URLs collected from real
users browsing the Web: the ALAD dataset. In our experiments, the classifier
fails miserably when trained on data collected using the Alexa list and tested
on data collected using the ALAD’s list.

In Figure 3.1 we selected a representative data point for the evaluations of each
of the variables enumerated above. We observe how in all the cases the accuracy
of the classifier drops below 50% accuracy.

In the light of these results, we concluded that previous evaluations should
be taken as an upper bound of attack effectiveness, with a caveat: although
uncommon, scenarios in which the assumptions hold might exist and, in such
case, the attack will be as effective as reported by the original evaluations.

Our work on this critical evaluation of attacks has steered research in the field
towards answering the following question: are WF techniques deployable in
practice? Panchenko et al. studied their scalability for realistic sizes of the open
world and concluded that they are not; Wang and Goldberg have followed a
different approach and rather aim at developing methods to mitigate the impact
of the variables listed above on attack effectiveness [76,79].

This work has also steered research in the field towards scenarios in which the
adversary can scope down the classification space. Two important such scenarios
are: first, Tor onion services, as Kwon et al. showed the adversary knows when
the user visits an onion service, which narrows down the search only to onion

i
i

i
i

i
i

i
i

38 CONTRIBUTIONS

services [41]; second, HTTPS, where the adversary knows the domain name of
the website and their goal is to identify the specific page within that domain.

3.1.1 The impact of the base rate fallacy

Given the difficulty of assessing the base rate of pages [66] – especially in Tor –,
most prior work on WF assumes a uniform base rate, namely, all pages have
the same probability of being visited. Furthermore, in many of the evaluations,
classifier performance is measured with Accuracy, TPR and FPR, but Precision
is not used. In our work we have thoroughly analyzed the impact of the base
rate fallacy on attack performance. We have evaluated the performance of the
WF classifier for a range of ratios between the monitored pages and the total
size of the world and for different base rate distributions [35,36]. We show that,
for pages with a low base rate, those evaluations are biased, overestimating
the performance of the classifier, which is in line with some of our critiques
explained in the previous section.

In addition, we strongly recommend the use of metrics that measure classifier
precision to evaluate performance. Precision is crucial in scenarios where
the positive class is low, as it is the case for website fingerprinting: website
popularity is a long-tail distribution with the vast majority of websites having low
probability of being visited [25]. As an example of metrics that consider Precision
we use F1-Score and Precision-Recall ROC curves, apart from Accuracy and
traditional ROC curves [36]. We have had influence in our field since Precision
has been incorporated in most recent evaluations.

3.1.2 Disparity of results not captured by averages

In most evaluations of WF attacks and defenses, researchers provide only an
average for each of the metrics they use. Even though averages and aggregate
metrics are useful to summarize the overall performance of the attack, they
are not informative about the impact the attack has on individual sites. This
is especially relevant for users and website developers: users have interest
in knowing whether websites they visit are vulnerable or not, and website
maintainers ought to know whether their website is at risk.

We have provided a breakdown of the value of popular metrics for each individual
website and observe that websites are affected by the attack unevenly. In
particular, the disparity is such that some websites completely evade the
classifiers while others are utterly exposed by the attack. This observation set

i
i

i
i

i
i

i
i

IDENTIFICATION AND ASSESSMENT OF NEW THREATS 39

 Onions

Tor Network

 Onion service
.........

Clients

Adversary

Figure 3.2: WF threat model with an adversary who controls middle nodes.

us to investigate more in depth the origin of such disparity which led to the
feature analysis explained in Section 3.3.

3.2 Identification and assessment of new threats

In our studies we have explored the WF threat model by considering new variants.
Our goal is to identify new attack vectors that WF enables. In this section we
comment on the relevance and scope of new threat models we have studied.

3.2.1 Middle-node WF adversaries

We consider an adversary who deploys WF from middle nodes instead of guards
(see Figure 3.2). The middle-node position is ideal to estimate the base rates
of onion services: as opposed to the guard position, it provides more uniform
samples over the user population and thus less biased samples. Such an adversary
can use WF to identify visits to onion services and estimate their base rate.

Accurate estimates of the base rate of onion services can be used to adjust the
base rates in the WF classifier and thus improve attack performance from the
guard position. Simulating such an adversary, we measured the popularity of a
well-known onion service that hosts an online social network [32].

In order to measure the base rate of the online social network we implemented a
one-class classifier, i.e., the classifier only takes instances for the monitored class
for training and draws a boundary around them. In Figure 3.3 we show the
evaluation of the classifier in the open world and how the classification boundary
(in black) was selected in order to reduce the FPR of the classifier and thus
reduce the effect of the base rate fallacy. Since we do not know the base rate of
the online social network a priori, in Figure 3.4 we show the performance of the

i
i

i
i

i
i

i
i

40 CONTRIBUTIONS

Figure 3.3: Projection over two features of the one-class classification of the
onion service of an online social network. The plus sign marks are instances
used for training the classifier, the circle marks are SNS instances used to test
the positive class and the cross marks are instances that belong to non-SNS
sites used to test the negative class. The black line shows the boundary that
was learned by the classifier to reduce FPs.

Figure 3.4: Performance of the one-class classifier for different base rates.

classifier for a range of base rates. As shown by the dashed vertical line in the
figure, the classifier provides reasonable Precision for base rates as low as 0.012.

For the same reasons the middle position is ideal for measurements of onion
service popularity, we argue that it provides better visibility to non-targeted

i
i

i
i

i
i

i
i

IDENTIFICATION AND ASSESSMENT OF NEW THREATS 41

 Web

 Internet

Client

Censor

...

Web server

DNS
Resolver

...

Eavesdropper

Figure 3.5: Adversary who applies WF on encrypted DNS traffic for monitoring
or censoring.

attacks where the adversary might not be able to de-anonymize a user completely,
but allows them to more efficiently select targets for subsequent attacks. We
developed a traffic classifier that allows to identify circuit type (either onion or
regular circuits), position and URL visited. This way the adversary can identify
connections to websites of interest and select the guard node for more expensive
or sophisticated attacks.

3.2.2 DNS-fingerprinting adversary

We have also studied threat models that fall outside the Tor’s threat model. We
consider an adversary who cannot see the domain because both DNS resolution
and TLS’s SNI are encrypted, and the IP resolves to a hosting provider or CDN
that does not allow to identify the website uniquely. This scenario is becoming
increasingly relevant as TLS version 1.3 supports encrypted SNI and important
players in the Internet are deploying encrypted DNS solutions. In particular,
Google and Cloudflare offer DNS over HTTPS (DoH) resolvers. DoH is a pro-
tocol to encrypt DNS that is also supported by major browsers such as Firefox.

In our work, we evaluate the use of WF on encrypted DNS traffic to either
monitor or censor visits to websites (illustrated in Figure 3.5). We found that
traditional WF features do not perform well on DNS and developed a new
feature set specifically tailored for DNS traffic.

We show that it is possible to identify websites by applying WF on DoH traffic
with over 90% F1-Score on a closed world of 1,500 sites. We then apply the
lessons learned in our previous critical analysis to evaluate the effect of factors
such as location, resolver, platform, or client on the attack’s performance. Our
results show that although these variables have a significant effect on attack
effectiveness, they are far from completely deterring the attacks.

i
i

i
i

i
i

i
i

42 CONTRIBUTIONS

Figure 3.6: Conditional entropy given a partial observation of DoH traces (the
first x number of packets) for different number of websites.

We contacted Google and Cloudflare to responsibly disclose our findings. After
our interaction with Cloudflare we decided to evaluate padding countermeasures
that, although partially implemented, they were not being used. The conclusion
of our evaluation of countermeasures is that they do not prevent the attack:
the accuracy of the attack is still high in the presence of a countermeasure. We
also evaluated the use of Tor to send DoH traffic and showed that, unlike WF
in regular HTTPS, Tor seems to effectively protect against WF attacks in DoH.

Finally, we also identify the cause of one of the information leaks that our
attack exploits. We use an information-theoretic framework to quantify the
amount of information revealed by each packet in our DoH traffic dataset. We
observed a substantial amount of information revealed by the fourth packet in
the DoH communication (see Figure 3.6). After further inspection, we found
that the fourth packet contains the domain name of the website and its size
reveals the length of such domain name. In Figure 3.7, we observe that the
packet length and domain length distributions are just shifted by a constant of
51 bytes, the size of the HTTPS header. We argue that such an early leak in the
communication permits the adversary to censor the subsequent communication
with the web server.

We are the first to analyze the privacy of an encrypted DNS protocol. Therefore,
our research raises awareness about the privacy issues that traffic analysis
poses for such protocols. Moreover, this study is significant because industry is
fostering the deployment and adoption of encrypted DNS.

i
i

i
i

i
i

i
i

ENGINEERING AND ANALYSIS OF TRAFFIC FEATURES 43

Figure 3.7: Histograms of domain name lengths (top) and fourth TLS record
lengths (bottom) (normalized over the total sum of counts).

3.3 Engineering and analysis of traffic features

In 2009, Dyer et al. published an extensive study of the impact of padding-
based countermeasures to WF attacks. They evaluated all existing classifiers
and noticed that the choice of classification algorithm had less impact on the
attack’s success rate than the set of classifier features [22]. The authors evaluated
different classifiers with the same set of features and did not observe a significant
difference. For this reason, there is a large part of research on WF that focuses
on the development of feature sets. As we described above, almost every attack
uses a different set of features with more or less success in classification.

As described in the previous section, we have developed new WF features that
allowed us to uncover new threats enabled by WF. In particular, we developed
a novel feature set for DNS over HTTPS traffic. Such features are based on
bi-grams of packet lengths which exploit the uniqueness of request-response
pairs in DNS traffic [68]. We also developed features that allow to identify
circuit type and circuit position from a middle node in the Tor network for the
analysis of WF attacks from Tor middle nodes.

We have not only studied traditional traffic features, but also high-level features
of websites. Website features are strongly correlated to network traffic features,
e.g., the amount of images in a page is correlated to download size in bytes,

i
i

i
i

i
i

i
i

44 CONTRIBUTIONS

with the advantage that web maintainers can easily modify them by changing
web server settings or simply modifying the website’s layout.

We have enumerated website features and analyzed their effect on network
traffic with the objective to provide design guidelines for website designers
and maintainers that help them protect their sites against WF [55]. Our
analysis is classifier-independent as it measures the inter- and intra-variance
of features across websites, without applying a classifier. Our main conclusion
is that small and dynamic websites are the most resistant to the attack. We
have collaborated with engineers of the Freedom of the Press Foundation to
implement such guidelines in their SecureDrop’s template.

We have also used such feature analysis to obtain data for meta-learning: we
use the results of a learner, the WF classifier, as input for another classifier
whose features are website-level features. This allow us to predict vulnerability
to fingerprinting without the need collect traffic data, as in traditional WF
evaluations. Such meta-learner could be implemented as an online service
such that website maintainers can submit the URL of their site and obtain a
prediction of its “fingerprintability score”.

3.4 Design and development of defenses

We have contributed to the state-of-the-art on WF defenses by proposing several
novel countermeasures that we describe below.

3.4.1 WTF-PAD

We present a defense that we humorously dubbed WTF-PAD. This defense
is based on adaptive padding, a traffic analysis countermeasure proposed by
Shmatikov and Wang [67]. The key insight of adaptive padding is that web
resources create spikes, or bursts, in traffic and that gaps between such bursts
reveal information about the page. Adaptive padding locates statistically
unlikely gaps, i.e., gaps that reveal identifying information, and covers them
with padding.

This strategy is implemented by creating a histogram with the inter-packet
times of a sample of the traffic to be protected. Then, on every packet that the
client sends, the defense samples a time from the histogram and uses it to set a
timeout. If the timeout expires, it means there is a statistically unlikely delay,
and thus we must add padding.

i
i

i
i

i
i

i
i

DESIGN AND DEVELOPMENT OF DEFENSES 45

The adaptive padding algorithm has a dual mode to add the padding. In “burst”
mode, the algorithm assumes there is a burst in the communication and waits
for longer periods before sending padding. In the “gap” mode, the algorithm
has detected a gap in traffic and aims at add padding traffic following the timing
distribution of a burst.

WTF-PAD follows a similar strategy which we have adapted to web traffic in
Tor. We have extended the padding strategy to allows padding in both incoming
and outgoing bursts. The defense can react to fake bursts added in one direction
and simulate an HTTP request-response pattern.

In addition, we create a mechanism to tune the overhead vs protection trade-off.
To do so we fit a statistical distribution to the histograms and shift the mean
to skew the distribution towards shorter or longer delays, to add more or less
padding, respectively.

WTF-PAD is especially suited for Tor, as its adaptive padding strategy does
not add any latency overhead to the communication – it does not add any delay.
Tor developers have expressed their interest in implementing WTF-PAD in Tor
and an implementation of a padding framework that generalizes WTF-PAD’s
strategy has landed in the master branch of Tor [46]. This framework will allow
to develop padding-based defenses against WF and other traffic analysis attacks
such as circuit fingerprinting and end-to-end correlation attacks.

Other studies have followed probabilistic approaches similar to WTF-PAD’s.
The HOT research project presented a countermeasure named Adaptive
Padding Early (APE) that simplifies WTF-PAD by eliminating the need
to fit the probability distributions to generate the padding [62]. Moreover,
new zero-latency defenses have recently been proposed following WTF-PAD’s
approach [26].

3.4.2 ALPaCA and LLaMA

ALPaCA and LLaMA are two application-level defenses that we have proposed
to protect Tor onion services and their users against WF.

ALPaCA is, to the best of our knowledge, the first server-side WF defense that
has been implemented and evaluated. ALPaCA specifies mechanisms to add
padding on web objects hosted in the server: e.g., it adds a random string of a
specified length in the metadata section of images or as comments to HTML and
scripts. By adding padding directly to web objects, ALPaCA can define padding
more efficiently than network-level defenses that pad a noisy transformation of

i
i

i
i

i
i

i
i

46 CONTRIBUTIONS

Figure 3.8: Padding applied on the resources that are embedded in the page to
be protected.

object sizes observed in the network packet sizes. In Figure 3.8 we illustrate
how ALPaCA adds padding to the resources embedded in the web page.

Our evaluation shows that ALPaCA reaches levels of protection that are similar
to its network-level counterparts.

One of the drawbacks for the deployment of a server-side defense is the lack of
incentives that general-purpose web servers have to protect against WF. We mo-
tivate ALPaCA as a defense that onion services are interested in implementing,
as they particularly invested in protecting the privacy of their visitors.

The Freedom of the Press reached us and expressed interest in implementing
and deployed ALPaCA in their SecureDrops. We have collaborated with one of
their engineers to modify the SecureDrop page and implement a prototype of
ALPaCA [1]. We expect to continue working on it and deploy the defense in
the future.

In the same work we also present a client-side defense, dubbed LLaMA. LLaMA
was inspired by Randomized Pipelining (RP) a WF defense that we have
confirmed is not effective [35]. We have worked with the developers of RP in
debugging it. We hypothesized that RP is affected by the same issues that limit
the performance of HTTP pipelining: one of them is that HTTP/1.1 requires
responses to be sent in-order, which can cause head-of-line blocking [60]. We
hypothesized that RP is affected by the same issues that limit the performance
of HTTP pipelining: one of them is that HTTP/1.1 requires responses to be sent
in-order, which can cause head-of-line blocking [60]. LLaMA follows the same
strategy as RP but it is implemented as a browser extension and thus does not
rely on HTTP pipelining: LLaMA intercepts HTTP request using the browser’s
API and adds delays to simulate the shuffling performed by RP. However, the

i
i

i
i

i
i

i
i

DESIGN AND DEVELOPMENT OF DEFENSES 47

performance of LLaMA shows marginal improvement over RP [19], indicating
that the RP strategy might be inherently limited by the use of HTTP/1.1.

Despite its initial failure, LLaMA and RP form an interesting family of
countermeasures (i.e., browser-level), that deserves more research. We are
aware that other research groups are working on variants of LLaMA’s strategy
to mitigate WF attacks.

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Chapter 4

Conclusion and Future Work

4.1 Conclusion

The work in this thesis has contributed to systematize the evaluation of website
fingerprinting techniques. By rigorously evaluating the methodology in prior
work, our research has identified flaws in previous WF models, such as unrealistic
assumptions and biases in the measurement of WF classifiers [35,36,55]. This
has been crucial to inform the development of countermeasures that mitigate
WF attacks.

Moreover, we have explored the attack surface created by WF, unveiling new
threats in Tor, namely: using WF from Tor middle nodes to estimate the
base rate of onion services which is sensitive information and can enhance the
effectiveness of the attack from the guard position; and deploying WF techniques
on encrypted DNS and HTTP traffic for monitoring and blocking website visits.

In the light of these findings, we have turned to the development of
countermeasures. We have proposed WTF-PAD, a lightweight defense
specifically designed for Tor that does not add any delay and adds moderate
bandwidth overheads to the communication. WTF-PAD’s zero-latency property
makes this defense specially suited for low-latency systems such as Tor. Even
though such defense provides slightly lower security than its high-latency
counterparts, our results show it provides sufficient protection in realistic
scenarios. The analysis of this defense has contributed to the implementation
of a general framework to develop traffic analysis countermeasures in Tor [47].

49

i
i

i
i

i
i

i
i

50 CONCLUSION AND FUTURE WORK

We identified scenarios where WF might be a significant threat. For instance,
in most of our work we have focused on Tor onion services, where the world is
orders of magnitude smaller than the regular Web and thus potentially easier
to fingerprint. Our research has shown that the impact of WF on onion services
is unevenly distributed: while average onion services tend to be more dynamic
and have less resources and thus are more resistant to WF, we found a number
of onion services that are critically vulnerable to WF [55].

We developed a methodology to identify the features that provide the most
information to the adversary, and mapped them to features the web developers
can alter via modifications on web server configuration and website’s layout. We
have collaborated with Freedom of the Press Foundation engineers to implement
some of these modifications in the template of their SecureDrop onion services.
In addition, we have developed a classifier based on such mapping between
high- and low-level features that provides a user-friendly service to diagnose
the exposure of websites to the attack.

Finally, inspired by the website-level protection guidelines described above,
we have explored the space for defenses that could automatically apply such
protections at the application layer. This has resulted in two application-level
defenses, one at the client-side and the other at the server side. The latter is
the first server-side defense that has been implemented against WF. We have
collaborated with the Freedom of the Press Foundation engineers to implement
a prototype to be deployed in their SecureDrop onion services [1].

WF is a significant privacy problem that deserves the attention of the research
community; scientific articles on WF continue to appear in most top computer
security conferences every year. We have improved the methodology to evaluate
WF techniques and proposed effective countermeasures to mitigate WF attacks,
however, there still are a number of open questions that we hope this work will
encourage to answer. In the following section we enumerate such open questions.

4.2 Future work

Below we list avenues for future work that follow from our research.

WF in realistic scenarios.
Our criticisms on the assumptions made on WF studies expose a research gap:
we point out that current attacks only work under laboratory conditions, but,
by no means, claim that attacks that work outside the laboratory do not exist.
As a matter of fact, there already is follow-up work on improving the practicality
of WF attacks [76,79] and progress on this has already allowed to relax some

i
i

i
i

i
i

i
i

FUTURE WORK 51

of the assumptions we had identified and assessed. For instance, Wang and
Goldberg have developed methods that allow to parse the traffic generated by
individual website visits from the bulk of traffic [79] and Wang has proposed
techniques to reduce the FPR in the open world [76]. However, there are still
assumptions that remain and that future work could try to tackle. Such work
may prove that accurate attacks are feasible in practice.

Provable privacy guarantees for WF defenses.
Even though there has been progress in the theoretical evaluation of WF
defenses [19, 42], in practice, the evaluation of defenses is still conducted by
bench-marking them using state-of-the-art attacks. This approach only provides
an upper bound for the effectiveness of the defense, as new and more effective
attacks may appear in the future. Future research should systematize the
evaluation of WF defenses such that the privacy guarantees they provide can
be proven, independently of current instantiations of the attack.

The end of the WF arms race.
The arms race between attacks and defenses has changed with the latest WF
attacks [64,69]. Such attacks are based on deep learning in order to automatically
extract relevant traffic features. Thus, the attacks can be applied on defended
traffic and extract features the defenses did not hide, eliminating the need
for feature engineering and, thus, giving an advantage to the adversary in the
arms race. Future work should explore defenses based on deep learning. An
interesting idea is to use Generative Adversarial Networks to automatically pit
deep learning-based attacks and defenses. Such approach could shed light on
the nature of the arms race, allowing to determine whether the attacker or the
defender has a head start by the nature of the problem.

Interaction between WF and other traffic analysis attacks.
WF defenses can create collateral damage by exposing users to other attacks.
For instance, it is important to note the various transformation in traffic of the
defenses that we have proposed. Future research should investigate whether
WF defenses introduce distinctive patterns that could aid other traffic analysis
attacks such as end-to-end correlation attacks, described in Chapter 1 of this
thesis. Should that be the case, the natural next step would then be to try
to hide those patterns while preserving the defense’s effectiveness against WF.
This is part of the more general problem of identifying distinctive patterns in
protocol specifications that could be exploited by traffic analysis [31] or even
enable covert-channels [20]. A more ambitious pursuit would be to develop
methods to systematically detect such patterns in protocol specifications and
develop strategies to hide them.

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Bibliography

[1] ALPaCA branch of SecureDrop. https://github.com/freedomofpress/
securedrop/tree/alpaca.

[2] GCHQ taps fibre-optic cables for secret access to world’s communi-
cations. http://www.theguardian.com/uk/2013/jun/21/gchq-cables-
secret-world-communications-nsa.

[3] How the NSA is still harvesting your online data. https:
//www.theguardian.com/world/2013/jun/27/nsa-online-metadata-
collection.

[4] OpenWPM. https://github.com/mozilla/OpenWPM.

[5] SecureDrop: the open-source whistleblower submission system. https:
//securedrop.org.

[6] Website Fingerprinting Defenses for Tor Hidden Services.
https://www.esat.kuleuven.be/cosic/website-fingerprinting-
defenses-for-tor-hidden-services/.

[7] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. The Web never forgets: Persistent
tracking mechanisms in the wild. In ACM Conference on Computer and
Communications Security (CCS), pages 674–689. ACM, 2014.

[8] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. The web never forgets: Persistent
tracking mechanisms in the wild. In ACM Conference on Computer and
Communications Security (CCS), pages 674–689. ACM, 2014.

[9] Gunes Acar, Marc Juárez, Nick Nikiforakis, Claudia Diaz, Seda F. Gürses,
Frank Piessens, and Bart Preneel. FPDetective: Dusting the web for
fingerprinters. In ACM Conference on Computer and Communications
Security (CCS), pages 1129–1140. ACM, 2013.

53

https://github.com/freedomofpress/securedrop/tree/alpaca
https://github.com/freedomofpress/securedrop/tree/alpaca
http://www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa
http://www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa
https://www.theguardian.com/world/2013/jun/27/nsa-online-metadata-collection
https://www.theguardian.com/world/2013/jun/27/nsa-online-metadata-collection
https://www.theguardian.com/world/2013/jun/27/nsa-online-metadata-collection
https://github.com/mozilla/OpenWPM
https://securedrop.org
https://securedrop.org
https://www.esat.kuleuven.be/cosic/website-fingerprinting-defenses-for-tor-hidden-services/
https://www.esat.kuleuven.be/cosic/website-fingerprinting-defenses-for-tor-hidden-services/

i
i

i
i

i
i

i
i

54 BIBLIOGRAPHY

[10] Sadia Afroz, Huilin Chen, M. Javed, Marc Juarez, Vern Paxson, S. A.
Qazi, S. Sajid, and Michael C. Tschantz. Transparency into the causes
of website inaccessibility. In Open Day for Privacy, Transparency and
Decentralization Workshop, 2018.

[11] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion
detection. ACM Transactions on Information and System Security
(TISSEC), 3(3):186–205, 2000.

[12] Steven M Bellovin. A technique for counting NATted hosts. In ACM
SIGCOMM Workshop on Internet measurment, pages 267–272. ACM,
2002.

[13] Xiang Cai, Rishab Nithyanand, and Rob Johnson. CS-BuFLO: A congestion
sensitive website fingerprinting defense. In ACM Workshop on Privacy in
the Electronic Society (WPES), pages 121–130. ACM, 2014.

[14] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg.
A systematic approach to developing and evaluating website fingerprinting
defenses. In ACM Conference on Computer and Communications Security
(CCS), pages 227–238. ACM, 2014.

[15] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching
from a distance: Website fingerprinting attacks and defenses. In ACM
Conference on Computer and Communications Security (CCS), pages 605–
616. ACM, 2012.

[16] David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[17] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-channel
leaks in web applications: A reality today, a challenge tomorrow. In IEEE
Symposium on Security and Privacy (S&P), pages 191–206. IEEE, 2010.

[18] Heyning Cheng and Ron Avnur. Traffic analysis of ssl encrypted
web browsing. Project paper, University of Berkeley, 1998. Available
at http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/
final-reports/ronathan-heyning.ps.

[19] Giovanni Cherubin, Jamie Hayes, and Marc Juarez. "Website fingerprinting
defenses at the application layer". In Proceedings on Privacy Enhancing
Technologies (PoETS), pages 168–185. De Gruyter, 2017.

[20] Roger Dingledine. One cell is enough to break Tor’s anonymity. Tor
Project Blog. https://blog.torproject.org/one-cell-enough-break-
tors-anonymity, 2009. (accessed: March 10, 2019).

http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
https://blog.torproject.org/one-cell-enough-break-tors-anonymity
https://blog.torproject.org/one-cell-enough-break-tors-anonymity

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 55

[21] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security
Symposium, pages 303–320. USENIX Security Symposium, 2004.

[22] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton.
Peek-a-Boo, I still see you: Why efficient traffic analysis countermeasures
fail. In IEEE Symposium on Security and Privacy (S&P), pages 332–346.
IEEE, 2012.

[23] Tariq Elahi, Kevin Bauer, Mashael AlSabah, Roger Dingledine, and Ian
Goldberg. Changing of the guards: A framework for understanding and
improving entry guard selection in tor. In Proceedings of the Workshop on
Privacy in the Electronic Society (WPES 2012). ACM, October 2012.

[24] Rafael Gálvez, Marc Juarez, and Claudia Diaz. Profiling tor users with
unsupervised learning techniques. In INFER 2016, page 16, 2016.

[25] Steven Glassman. A caching relay for the world wide web. Computer
Networks and ISDN Systems, 27(2):165–173, 1994.

[26] Jiajun Gong and Tao Wang. Poster: Zero-delay lightweight defenses against
website fingerprinting.

[27] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer Series in Statistics. Springer New York Inc.,
New York, NY, USA, 2001.

[28] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable
website fingerprinting technique. In USENIX Security Symposium, pages
1–17. USENIX Association, 2016.

[29] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website
fingerprinting: attacking popular privacy enhancing technologies with the
multinomial Naïve-Bayes classifier. In ACM Workshop on Cloud Computing
Security, pages 31–42. ACM, 2009.

[30] Andrew Hintz. Fingerprinting websites using traffic analysis. In Privacy
Enhancing Technologies Symposium (PETS), pages 171–178. Springer,
2003.

[31] A. Houmansadr, C. Brubaker, and V. Shmatikov. The Parrot Is Dead:
Observing Unobservable Network Communications. In IEEE Symposium
on Security and Privacy (S&P), pages 65–79. IEEE, 2013.

[32] Rob Jansen, Marc Juarez, Rafael Galvez, Tariq Elahi, and Claudia Diaz.
Inside job: Applying traffic analysis to measure tor from within. In Network
& Distributed System Security Symposium (NDSS). Internet Society, 2018.

i
i

i
i

i
i

i
i

56 BIBLIOGRAPHY

[33] Johnny Au and other Wikipedia contributors. Size of Wikipedia. https:
//en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia. (accessed:
March, 2019).

[34] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson.
Users Get Routed: Traffic Correlation on Tor by Realistic Adversaries.
In ACM Conference on Computer and Communications Security (CCS),
pages 337–348. ACM, 2013.

[35] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel
Greenstadt. A critical evaluation of website fingerprinting attacks. In
ACM Conference on Computer and Communications Security (CCS), pages
263–274. ACM, 2014.

[36] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew
Wright. Toward an efficient website fingerprinting defense. In European
Symposium on Research in Computer Security (ESORICS), pages 27–46.
Springer, 2016.

[37] Marc Juarez and Vicenç Torra. A Self-Adaptive Classification for the
Dissociating Privacy Agent. In PST2013, the eleventh annual conference
on Privacy, Security and Trust, pages 44–50, 2013.

[38] Marc Juarez and Vicenç Torra. Towards a privacy agent for information
retrieval. International Journal of Intelligent Systems, 28(6):606–622, 2013.

[39] Marc Juarez and Vicenç Torra. Dispa: An intelligent agent for private
web search. In Guillermo Navarro-Arribas and VicenÃ§ Torra, editors,
Advanced Research in Data Privacy, volume 567 of Studies in Computational
Intelligence, pages 389–405. Springer International Publishing, 2015.

[40] George Kadianakis. Tor’s Fall Harvest: The Next Generation of Onion
Services. Tor Project Blog. https://blog.torproject.org/tors-fall-
harvest-next-generation-onion-services, 2017. (accessed: June 25,
2019).

[41] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas
Devadas. Circuit fingerprinting attacks: Passive deanonymization of tor
hidden services. In USENIX Security Symposium, pages 287–302. USENIX
Association, 2015.

[42] Shuai Li, Huajun Guo, and Nicholas Hopper. Measuring information
leakage in website fingerprinting attacks and defenses. In ACM Conference
on Computer and Communications Security (CCS), pages 1977–1992. ACM,
2018.

https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://blog.torproject.org/tors-fall-harvest-next-generation-onion-services
https://blog.torproject.org/tors-fall-harvest-next-generation-onion-services

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 57

[43] Marc Liberatore and Brian Neil Levine. "Inferring the source of
encrypted HTTP connections". In ACM Conference on Computer and
Communications Security (CCS), pages 255–263. ACM, 2006.

[44] Lucas Mearian. CIA-backed Cleversafe announces 10-exabyte storage sys-
tem. https://www.computerworld.com/article/2500364/cia-backed-
cleversafe-announces-10-exabyte-storage-system.html. (accessed:
March, 2019).

[45] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky K. C.
Chang, and Roberto Perdisci. HTTPOS: Sealing information leaks with
browser-side obfuscation of encrypted flows. In Network & Distributed
System Security Symposium (NDSS). IEEE Computer Society, 2011.

[46] Nick Mathewson. New Release: Tor 0.4.0.1-alpha. Tor Project Blog. https:
//blog.torproject.org/new-release-tor-0401-alpha, 2019. (accessed:
March 10, 2019).

[47] Nick Matthewson. New Release: Tor 0.4.0.5. Tor Project Blog. https:
//blog.torproject.org/new-release-tor-0405, 2019. (accessed: March
10, 2019).

[48] Maurice de Kunder. The size of the World Wide Web. https://
www.worldwidewebsize.com. (accessed: March, 2019).

[49] Brad Miller, Ling Huang, Anthony D Joseph, and J Doug Tygar. I know
why you went to the clinic: Risks and realization of https traffic analysis.
In Privacy Enhancing Technologies Symposium (PETS), pages 143–163.
Springer, 2014.

[50] Shailen Mistry and Bhaskaran Raman. Quantifying Traffic Analysis of
Encrypted Web-Browsing. Project paper, University of Berkeley, 1998.
Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.10.5823&rep=rep1&type=pdf.

[51] Mozilla Labs. Test Pilot: Tab Open/Close Study: Results.
https://testpilot.mozillalabs.com/testcases/tab-open-close/
results.html#minmax. (accessed: March 17, 2013).

[52] S.J. Murdoch and G. Danezis. Low-Cost Traffic Analysis of Tor. In IEEE
Symposium on Security and Privacy (S&P), pages 183–195. IEEE, 2005.

[53] Rishab Nithyanand, Xiang Cai, and Rob Johnson. Glove: A bespoke
website fingerprinting defense. In Proceedings of the 13th Workshop on
Privacy in the Electronic Society, WPES ’14, pages 131–134. ACM, 2014.

https://www.computerworld.com/article/2500364/cia-backed-cleversafe-announces-10-exabyte-storage-system.html
https://www.computerworld.com/article/2500364/cia-backed-cleversafe-announces-10-exabyte-storage-system.html
https://blog.torproject.org/new-release-tor-0401-alpha
https://blog.torproject.org/new-release-tor-0401-alpha
https://blog.torproject.org/new-release-tor-0405
https://blog.torproject.org/new-release-tor-0405
https://www.worldwidewebsize.com
https://www.worldwidewebsize.com
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.5823&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.5823&rep=rep1&type=pdf
https://testpilot.mozillalabs.com/testcases/tab-open-close/results.html#minmax
https://testpilot.mozillalabs.com/testcases/tab-open-close/results.html#minmax

i
i

i
i

i
i

i
i

58 BIBLIOGRAPHY

[54] Se Eun Oh, Shuai Li, and Nicholas Hopper. Fingerprinting keywords in
search queries over tor. Proceedings on Privacy Enhancing Technologies
(PoETS), 2017(4):251–270, 2017.

[55] Rebekah Overdorf, Marc Juarez, Gunes Acar, Rachel Greenstadt,
and Claudia Diaz. How unique is your onion? an analysis of the
fingerprintability of tor onion services. In ACM Conference on Computer
and Communications Security (CCS), pages 2021–2036. ACM, 2017.

[56] Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan
Pennekamp, Klaus Wehrle, and Thomas Engel. Website fingerprinting
at internet scale. In Network & Distributed System Security Symposium
(NDSS), pages 1–15. IEEE Computer Society, 2016.

[57] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.
Website fingerprinting in onion routing based anonymization networks.
In ACM Workshop on Privacy in the Electronic Society (WPES), pages
103–114. ACM, 2011.

[58] Mike Perry. Experimental defense for website traffic fingerprinting.
Tor Project Blog. https://blog.torproject.org/blog/experimental-
defense-website-traffic-fingerprinting, 2011. (accessed: October
10, 2013).

[59] Mike Perry. A Critique of Website Traffic Fingerprinting Attacks. Tor
project Blog. https://blog.torproject.org/blog/critique-website-
traffic-fingerprinting-attacks, 2013. (accessed: December 15, 2013).

[60] Mike Perry, Gunes Acar, and Marc Juarez. personal communication.

[61] Mike Perry, Erinn Clark, Steven Murdoch, and Georg Koppen. The
Design and Implementation of the Tor Browser [DRAFT]. https://
www.torproject.org/projects/torbrowser/design.

[62] Tobias Pulls. Adaptive Padding Early (APE). The HOT research
project blog. https://www.cs.kau.se/pulls/hot/thebasketcase-ape/,
2016. (accessed: March 10, 2019).

[63] Mohammad Saidur Rahman, Payap Sirinam, Nate Matthews, Kan-
tha Girish Gangadhara, and MatthewWright. Tik-tok: The utility of packet
timing in website fingerprinting attacks. arXiv preprint arXiv:1902.06421,
2019.

[64] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and
Wouter Joosen. Automated website fingerprinting through deep learning.
In Network & Distributed System Security Symposium (NDSS). Internet
Society, 2018.

https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks
https://www.torproject.org/projects/torbrowser/design
https://www.torproject.org/projects/torbrowser/design
https://www.cs.kau.se/pulls/hot/thebasketcase-ape/

i
i

i
i

i
i

i
i

BIBLIOGRAPHY 59

[65] Mahrud Sayrafi. Introducing the Cloudflare Onion Service. Cloudflare Blog.
https://blog.cloudflare.com/cloudflare-onion-service/, 2018. (ac-
cessed: June 25, 2019).

[66] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten
Zimmermann, Stephen D. Strowes, and Narseo Vallina-Rodriguez. A long
way to the top: Significance, structure, and stability of internet top lists.
In Internet Measurement Conference, pages 478–493. ACM, 2018.

[67] Vitaly Shmatikov and Ming-Hsiu Wang. Timing analysis in low-latency
mix networks: Attacks and defenses. European Symposium on Research in
Computer Security (ESORICS), 2006.

[68] Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez, and
Carmela Troncoso. Does encrypted DNS imply privacy? A traffic analysis
perspective. Submitted to the USENIX Security Symposium, 2020.

[69] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. Deep
fingerprinting: Undermining website fingerprinting defenses with deep
learning. In ACM Conference on Computer and Communications Security
(CCS), pages 1928–1943. ACM, 2018.

[70] Dawn Xiaodong Song, David A Wagner, and Xuqing Tian. Timing analysis
of keystrokes and timing attacks on SSH. In USENIX Security Symposium,
volume 2001, 2001.

[71] Qixiang Sun, Daniel R Simon, Yi-Min Wang, Wilf Russel, Venkata N.
Padmanabhan, and Lili Qiu. Statistical identification of encrypted web
browsing traffic. In IEEE Symposium on Security and Privacy (S&P),
pages 19–30. IEEE, 2002.

[72] Paul F Syverson, David M Goldschlag, and Michael G Reed. Anonymous
connections and onion routing. In IEEE Symposium on Security and
Privacy (S&P), pages 44–54. IEEE, 1997.

[73] Ambuj Tewari and Peter L. Bartlett. Learning theory. In Paulo S.R. Diniz,
Johan A.K. Suykens, Rama Chellappa, and Sergios Theodoridis, editors,
Academic Press Library in Signal Processing: Signal Processing Theory
and Machine Learning, volume 1 of Academic Press Library in Signal
Processing, chapter 14, pages 775–816. Elsevier, 2014.

[74] The Tor project. Users statistics. https://metrics.torproject.org/
users.html. (accessed: March, 2019).

[75] International Telecommunication Union (ITU) UN’s Telecommunication
Development Bureau. ICT Facts and Figures 2017. https://www.itu.int/

https://blog.cloudflare.com/cloudflare-onion-service/
https://metrics.torproject.org/users.html
https://metrics.torproject.org/users.html
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx

i
i

i
i

i
i

i
i

60 BIBLIOGRAPHY

en/ITU-D/Statistics/Pages/facts/default.aspx, 2017. (accessed:
February 26, 2017).

[76] Tao Wang. Optimizing precision for open-world website fingerprinting.
arXiv preprint arXiv:1802.05409, 2018.

[77] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg.
Effective attacks and provable defenses for website fingerprinting. In
USENIX Security Symposium, pages 143–157. USENIX Association, 2014.

[78] Tao Wang and Ian Goldberg. Improved Website Fingerprinting on Tor.
In ACM Workshop on Privacy in the Electronic Society (WPES), pages
201–212. ACM, 2013.

[79] Tao Wang and Ian Goldberg. On realistically attacking tor with website
fingerprinting. In Proceedings on Privacy Enhancing Technologies (PoETS),
pages 21–36. De Gruyter Open, 2016.

[80] Tao Wang and Ian Goldberg. Walkie-talkie: An efficient defense against
passive website fingerprinting attacks. In USENIX Security Symposium,
pages 1375–1390. USENIX Association, 2017.

[81] Andrew M White, Austin R Matthews, Kevin Z Snow, and Fabian Monrose.
Phonotactic reconstruction of encrypted voip conversations: Hookt on fon-
iks. In 2011 IEEE Symposium on Security and Privacy, pages 3–18. IEEE,
2011.

[82] Charles V Wright, Scott E Coull, and Fabian Monrose. Traffic morphing:
An efficient defense against statistical traffic analysis. In Network &
Distributed System Security Symposium (NDSS). IEEE Computer Society,
2009.

https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx

i
i

i
i

i
i

i
i

Part II

Publications

61

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

List of Publications

International Journals

1. Cherubin, G., Hayes, J., and Juarez, M. "Website fingerprinting
defenses at the application layer". In Proceedings on Privacy Enhancing
Technologies (PoETS) (2017), De Gruyter, pp. 168–185

• See p. 127

2. Juarez, M., and Torra, V. Towards a privacy agent for information
retrieval. International Journal of Intelligent Systems 28, 6 (2013), 606–
622

International Conferences and Workshops with Pro-
ceedings

1. Siby, S., Juarez, M., Diaz, C., Vallina-Rodriguez, N., and
Troncoso, C. Does encrypted DNS imply privacy? A traffic analysis
perspective. Submitted to the USENIX Security Symposium (2020)

• See p. 251

• Under submission to USENIX’20.

2. Sirinam, P., Imani, M., Juarez, M., and Wright, M. Deep
fingerprinting: Undermining website fingerprinting defenses with deep
learning. In ACM Conference on Computer and Communications Security
(CCS) (2018), ACM, pp. 1928–1943

63

i
i

i
i

i
i

i
i

64 LIST OF PUBLICATIONS

3. Jansen, R., Juarez, M., Galvez, R., Elahi, T., and Diaz, C. Inside
job: Applying traffic analysis to measure tor from within. In Network &
Distributed System Security Symposium (NDSS) (2018), Internet Society

• See p. 205

4. Rimmer, V., Preuveneers, D., Juarez, M., Van Goethem, T., and
Joosen, W. Automated website fingerprinting through deep learning.
In Network & Distributed System Security Symposium (NDSS) (2018),
Internet Society

5. Overdorf, R., Juarez, M., Acar, G., Greenstadt, R., and Diaz,
C. How unique is your onion? an analysis of the fingerprintability of tor
onion services. In ACM Conference on Computer and Communications
Security (CCS) (2017), ACM, pp. 2021–2036

• See p. 165

6. Juarez, M., Imani, M., Perry, M., Diaz, C., and Wright, M.
Toward an efficient website fingerprinting defense. In European Symposium
on Research in Computer Security (ESORICS) (2016), Springer, pp. 27–46

• See p. 101

7. Juarez, M., Afroz, S., Acar, G., Diaz, C., and Greenstadt, R. A
critical evaluation of website fingerprinting attacks. In ACM Conference on
Computer and Communications Security (CCS) (2014), ACM, pp. 263–274

• See p. 67

8. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan,
A., and Diaz, C. The Web never forgets: Persistent tracking mechanisms
in the wild. In ACM Conference on Computer and Communications
Security (CCS) (2014), ACM, pp. 674–689

9. Acar, G., Juárez, M., Nikiforakis, N., Diaz, C., Gürses, S. F.,
Piessens, F., and Preneel, B. FPDetective: Dusting the web for
fingerprinters. In ACM Conference on Computer and Communications
Security (CCS) (2013), ACM, pp. 1129–1140

10. Juarez, M., and Torra, V. A Self-Adaptive Classification for the
Dissociating Privacy Agent. In PST2013, the eleventh annual conference
on Privacy, Security and Trust (2013), pp. 44–50

i
i

i
i

i
i

i
i

LIST OF PUBLICATIONS 65

Articles in Books

1. Juarez, M., and Torra, V. Dispa: An intelligent agent for private web
search. In Advanced Research in Data Privacy, G. Navarro-Arribas and
V. Torra, Eds., vol. 567 of Studies in Computational Intelligence. Springer
International Publishing, 2015, pp. 389–405

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Publication

A Critical Evaluation of
Website Fingerprinting
Attacks

Publication Data

Juarez, M., Afroz, S., Acar, G., Diaz, C., and Greenstadt,
R. A critical evaluation of website fingerprinting attacks. In
ACM Conference on Computer and Communications Security (CCS)
(2014), ACM, pp. 263–274

Contributions

• Principal author.

67

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

A Critical Evaluation of Website Fingerprinting
Attacks

Marc Juarez1, Sadia Afroz2, Gunes Acar1,
Claudia Diaz1, and Rachel Greenstadt3

1 KU Leuven, ESAT/COSIC and iMinds, Leuven, Belgium
2 UC Berkeley, Berkeley, US

3 Drexel University, Philadelphia, US

Abstract. Recent studies on Website Fingerprinting (WF) claim
to have found highly effective attacks on Tor. However,
these studies make assumptions about user settings, adversary
capabilities, and the nature of the Web that do not necessarily
hold in practical scenarios. The following study critically evaluates
these assumptions by conducting the attack where the assumptions
do not hold. We show that certain variables, for example, user’s
browsing habits, differences in location and version of Tor Browser
Bundle, that are usually omitted from the current WF model
have a significant impact on the efficacy of the attack. We also
empirically show how prior work succumbs to the base rate fallacy
in the open-world scenario. We address this problem by augmenting
our classification method with a verification step. We conclude that
even though this approach reduces the number of false positives
over 63%, it does not completely solve the problem, which remains
an open issue for WF attacks.

1 Introduction

Anonymous communication systems are designed to protect users from malicious
websites and network eavesdroppers by providing means to hide the content
and metadata of communications. The Onion Router (Tor), with about three
million daily users, is the most popular anonymous communication network. It
is specially designed for low-latency applications such as web browsing [8,28].
Tor routes connections through three-hop circuits and encrypts the traffic in
layers using onion routing [10], so that none of the relays can know both the
origin and the destination of the communication at the same time.

69

i
i

i
i

i
i

i
i

70 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

Users

ISP

Tor

Web

(a) ISP level adversary.

Users

Entry

Tor

Web

(b) Malicious entry guard.

Figure 2: WF Non-targeted attacks in Tor.

Although Tor hides the routing information and communication content, the
analysis of the network traffic alone may provide very rich information to an
attacker with sufficient capabilities. Using timing, frequency and length of the
messages, an attacker can bypass otherwise very robust security mechanisms
and identify the communicating parties [7, 21].

Website fingerprinting (WF) allows an adversary to learn information about a
user’s web browsing activity by recognizing patterns in his traffic. The adversary
in this attack compares the network traces of Tor users to a set of pre-recorded
webpage fingerprints to identify the page that is being accessed. WF is different
from traffic correlation attacks where the adversary has access to both entry
and exit nodes and matches the patterns in the incoming and outgoing traffic to
the Tor network [14]. WF is also different from deep packet inspection protocols
and related traffic analysis techniques that are used to censor Tor [13].

Several previous works demonstrate the effectiveness of WF attacks on
Tor despite the encryption, padding and application level defenses such as
randomized pipelining [3,11,22,25,32]. Although we appreciate the importance,
novelty and scientific rigor of these studies, the assumptions they made vastly
simplify the problem and give unrealistic advantages to the adversary by either
simplifying the world or overestimating the adversary’s capabilities. Some of
these assumptions are challenging and hard to attain realistically in practice [11].

i
i

i
i

i
i

i
i

INTRODUCTION 71

For example, most current works implicitly/explicitly assume that the adversary
and user both use the same Tor Browser Bundle (TBB), visit the same localized
version of a limited set of pages/sites almost at the same time (or a few days
apart) by using only one tab browsing. However, violating at least one of these
assumptions can reduce the efficacy of the attack significantly to a point that
might not make WF a threat in the real world. The authors of these studies
aim to provide an upper bound for the efficacy of the attacks and argue that a
particular attacker or scenario might satisfy them. Also it has been argued that
in a real-world scenario, proposed countermeasures against WF would actually
be more efficient than these studies have estimated [24].

The goal of this study is to assess the practical feasibility of WF attacks proposed
in prior work. Our contributions and their organization in the paper are as
follows:

A critical evaluation of assumptions made by prior WF studies: We
provide an extensive model of the WF attack, define the assumptions made by
prior WF studies on the adversary, the client-setting and the Web. We argue
that these assumptions are unrealistic because they are oversimplifying the
problem thus are unlikely to hold in practice (Section 3).

An analysis of the variables that affect the accuracy of WF attacks:
We pin down the variables that were omitted from the models considered in
previous work that have an impact on the practical effectiveness and feasibility
of the attacks (Section 4). We present the results of a set of comparative
experiments to evaluate the effects of these variables on traffic traces and
classifier accuracy. We show that, for some of the variables, the accuracy can
drop up to 70%.

An approach to reduce false positive rates: We show the effect of false
positives in an open-world of 35K webpages and use Classify-Verify in the WF
domain on the estimated probabilities of the classifier which reduces the number
of false positives over 63% (Section 5).

A model of the adversary’s cost: We model the cost that an adversary
would incur to maintain a successful WF system (Section 6). We suspect that
maintaining a perfect WF system is costly as the adversary needs to collect
information about different localized versions of the webpages, user’s browsing
settings and update the system over time to recover from data staleness.

i
i

i
i

i
i

i
i

72 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

2 Website Fingerprinting

The main objective of an adversary in a typical WF scenario is to identify which
page the user is visiting. The adversary may want to learn this information for
surveillance or intelligence purposes.

The WF attack is typically treated as a classification problem, where
classification categories are webpages and observations are traffic traces. The
adversary first collects traffic traces by visiting webpages and trains a supervised
classifier using features such as the length, direction and inter-arrival times of
network packets.

Whenever a user visits a webpage over Tor, the adversary records the network
trace by, for instance, intercepting the traffic locally (LAN), by having access to
routers of the user’s ISP, or by controlling an entry guard to the Tor network.
He then runs the classifier on the intercepted network trace to guess the site
the user has visited.

The first WF attacks were developed to identify pages within a single website
over SSL connections [4,19]. In 2002, Sun et al. tackled the more challenging
problem of identifying individual pages within a set of websites [27] which led to
Hintz’s attack on an anonymizing web proxy (SafeWeb) [12]. Many WF studies
on one-hop proxy attacks have followed [2, 9, 16,18].

Herrmann et al. [11] deployed the first WF attack on the Tor anonymity
network with only a 3% success rate for a world of 775 pages. The attacks that
followed significantly improved the accuracy: Shi and Matsuura obtained 50%
success rate for 20 pages [25]; Panchenko et al., obtained 54.61% accuracy using
Herrmann’s dataset [22]; and, finally, Cai et al. and Wang and Goldberg report
success rates over 90% using edit-distance based classifiers on a world of 100
pages [3, 32].

3 Model

We model the WF adversary as passive and local: the adversary is able to
eavesdrop on the user’s traffic, but cannot add, drop or modify packets. We also
assume that the adversary cannot decrypt the contents of the network packets,
as that would render WF attacks unnecessary.

Figure 1 depicts the basic WF scenario: the attacker taps the network between
the victim and the Tor entry guard and collects traffic traces, which he then
compares against his database of webpage fingerprints. We make a distinction

i
i

i
i

i
i

i
i

MODEL 73

User

Tor
Web

Figure 1: The basic WF targeted attack in Tor.

between two types of attacks based on the number of users targeted by the
adversary and the resources at his disposal.

Targeted: In this attack, the adversary targets a specific victim to retrieve his
browsing activity. This allows the attacker to train a classifier under conditions
similar to those of the victim (see Figure 1), potentially increasing the success
of the attack. The adversary may have enough background knowledge about
the user to reproduce his configuration, or he could detect it from the observed
traffic data. In Section 6, we discuss how difficult it is for the attacker to
discover properties about the user’s setting.

Non-targeted (dragnet surveillance): In this case, the adversary targets a
set of users instead of one. ISPs, Internet exchanges and entry guard operators
are in a position to deploy this attack since they can intercept the network traffic
of many users (see Figures 2a and 2b, respectively). The attacker trains the
classifier on a specific setting and uses the same classifier on all communications
that he observes.

3.1 Assumptions

We compiled the assumptions made in the literature of WF attacks on Tor. We
divided the basic model in three parts: (i) Client-side, (ii) Adversary, and (iii)
Web, and classified the assumptions according to the part of the model they
relate to. We note that the assumptions are not mutually exclusive and are open
to other classifications. The papers that explicitly mention these assumptions
are listed in Table 1.

Client-setting

Closed-world: There are only k webpages that the user may visit. This is a
very strong assumption because k is always very small compared to the actual
number of existing webpages. Some authors have also evaluated their classifiers

i
i

i
i

i
i

i
i

74 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

in an open-world scenario [3,22,32], where there is a set of k target pages being
monitored but the user is allowed to visit pages that are not in that set.

Browsing behaviour: The users follow a specific behaviour. For example:
users browse the web sequentially, one page after the other, having only a single
tab open. Nevertheless, real-world studies found that users tend to have multiple
open tabs or windows [20,30], which allow them to load several pages at once.
Although we do not have access to data collected from Tor users, it is safe to
think that Tor users exhibit this behavior since their connection is slower.

700 800 900 1000 1100

0
5

10

Total trace size (KBytes)

Fr
eq
ue

nc
y

(a) Histogram of trace sizes (b) Doodle and standard versions

Figure 3: Different versions of the Google homepage and corresponding his-
togram of trace sizes for 40 visits. The histogram shows that the distributions of
packet sizes are significantly different for the same page visited on different dates.

Web

Template websites: All websites are built using templates. Cai et al. used
a Hidden Markov Model (HMM) to leverage the link structure of websites for
WF [3]. The authors made this assumption in order to simplify their model and
reduce the number of states in the HMM.

There are further unrealistic assumptions about the Web that are not explicit
but that may improve the accuracy of the WF attack. For instance, one recent
study used localized (German) versions of the webpages in order to avoid
different language versions [32]. In our experiments, we observed cases such as
ask.com where the total trace size of the English version was about five times
bigger than the German version of the same webpage. Given that the language
of the webpage will be selected according to the Tor exit node, assuming that
users would visit the same local version is a clear advantage to the adversary.

Even if we limit ourselves to localized versions of webpages, there are still other
sources of dynamism such as bot detection, changing graphics and third-party

i
i

i
i

i
i

i
i

MODEL 75

content. Figure 3a shows the histogram of sizes of 40 traces collected from
google.de between February 14-16. We observe a clear distinction between two
sets of trace sizes. The group on the left corresponds to the page without a
doodle (left in Figure 3b). The group on the right with larger network footprint
corresponds to the version with a special doodle for St. Valentine’s day (right
in Figure 3b). Note that Wang and Goldberg concluded that sites that change
in size are hard to classify correctly [32].

Adversary

Page load parsing: The adversary can detect the beginning and the end of
different page loads in a traffic trace. This has been shown to be a very hard
task in the context of session reconstruction from real-world network traffic [6].

No background traffic: The adversary can filter all background network
traffic produced by other applications or other connections going through the
same Tor circuit. Tor is increasingly used in settings where multiple applications
or complete operating system traffic is sent over the Tor network4. In these
cases, separating the browsing traffic from the background traffic may present a
nontrivial challenge to the adversary.

Replicability: The adversary can train his classifier under the same conditions
as the victim. For instance, the adversary is assumed to be able to replicate
client-side settings such as operating system, network connection or Tor Browser
Bundle (TBB) version. This assumption allows researchers to train and test on
data collected using the same settings. Depending on the type of attack this
may be impossible, as the adversary may encounter difficulties in detecting and
replicating users’ configuration (especially in non-targeted attacks).

Table 1: Assumptions and references to papers that mention them.

Assumption Explicitly made by

Closed-world [11,25]
Browsing behavior [11]
Page load parsing [3, 11,22,25,32]
No background noise [3, 11,22,25,32]
Replicability [11,25]
Template websites [3]

4 https://tails.boum.org/

https://tails.boum.org/

i
i

i
i

i
i

i
i

76 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

4 Evaluation

In this section we challenge some of the assumptions described in Section 3.
The assumptions are: Closed-world, browsing behavior, no background traffic
and replicability. For each assumption we identify the variables that are ruled
out of the model by the assumption. Our objective is to measure the effect of
these variables on the accuracy of WF attacks.

4.1 Datasets

We used two different lists of URLs for our crawls: the top Alexa ranking and
the Active Linguistic Authentication Datatset (ALAD) [15]. The Alexa dataset
is a well known list of most visited URLs that has been widely used in previous
WF studies as well as in other research domains. Testing on data collected by
crawling URLs in the Alexa ranking implies that the adversary always knows
which pages the users are going to visit and can train a classifier on those pages.
We want to test the reliability of a classifier when this assumption does not hold.

The Active Linguistic Authentication Dataset (ALAD) [15] is a dataset of web
visits of real-world users, collected for the purpose of behavioral biometrics
evaluation. The complete dataset contains data collected from 80 paid users in
a simulated work environment. These users used the computers provided by the
researchers for a total of 40 hours to perform some assigned tasks: open-ended
blogging (at least 6 hours a day) and summary writing of given news articles
(at least 2 hours a day). We found that these users were browsing the web to
check their emails, social network sites and searching for jobs.

Table 2: ALAD dataset statistics

Top Alexa Home page Other pages Not in Alexa
100 4.84% 50.34% 44.82%
1000 5.81% 60.26% 33.93%
10000 6.33% 68.01% 25.66%

The users browsed total 38,716 unique URLs (excluding news articles) which
were loaded 89,719 times. These URLs include some top ranked Alexa sites,
such as google.com, facebook.com and youtube.com and some sites that are
not in Alexa top 1 million list, such as bakery-square.com, miresearch.org.
Over 44% of the sites were not in the Alexa top 100, and 25% of the sites were
not in the Alexa top 10000. Over 50% sites were pages other than the front

google.com
facebook.com
youtube.com
bakery-square.com
miresearch.org

i
i

i
i

i
i

i
i

EVALUATION 77

page (shown in Table 2), such as different search pages on Google/Wikipedia, a
subdomain of a site (such as dell.msn.com) and logged-in pages of Facebook.

4.2 Data collection

To collect network traces, we used TBB combined with Selenium5 to visit the
pages, and recorded the network packets using a network packet dump tool
called dumpcap. We used the Stem library to control and configure the Tor
process [29]. Following Wang and Goldberg we extended the 10 minute circuit
renewal period to 600,000 and disabled the UseEntryGuards to avoid using a
fixed set of guard nodes [32]. We also used their methods to parse the Tor cells
and remove noise by filtering acknowledgements and SENDMEs.

We crawled the webpages in batches. For each batch, we visited each page 4
times and collected between 5 and 10 batches of data in each crawl, resulting in
20 to 40 visits for each webpage in total. We waited 5 seconds after each page
had finished loading and left 5 second pauses between each visit. The batches
are collected in a round-robin fashion, hours apart from each other. We made
over 50 such crawls for the experiments presented in this paper and we will
share the data with other researchers upon request.

We used two physical and three cloud-based virtual machines to run crawls from
different geographical locations. In order to have identical crawler configurations,
we used Linux Container (LXC) based virtualization running on the same
distribution and version of the GNU/Linux operating system. We disabled
operating system updates to prevent background network traffic and never ran
more than one crawler on a machine at the same time. We made sure that the
average CPU load of the machines is low, as this may affect the WF defenses
shipped in the TBB6.

4.3 Methodology

In order to reduce the confounding effect of other variables in the measurement,
we crawled the same set of webpages multiple times by changing the value of
the variable under evaluation and fixing the rest of the variables. For each
variable that we wanted to evaluate, we defined a control crawl by setting the
variable to its default value (e.g., UseEntryGuards = 1), and a test crawl, by
setting the variable to the value of interest (e.g., UseEntryGuards = 0).

5http://docs.seleniumhq.org/
6 https://trac.torproject.org/projects/tor/ticket/8470#comment:7

dell.msn.com
http://docs.seleniumhq.org/
https://trac.torproject.org/projects/tor/ticket/8470#comment:7

i
i

i
i

i
i

i
i

78 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

Note that the randomized nature of the path selection algorithm of Tor and
effect of time are two control variables that we cannot completely fix when
measuring the effect of other variables. We tried to overcome this by using
cross-validation and minimizing the time gap between the control and test crawl
in all of our experiments.

These experiments are composed by the two following steps:

1. k-fold cross-validation using data of the control crawl.

2. Evaluate classifier’s accuracy training on the control crawl and testing
with data from the test crawl.

The accuracy obtained in Step 1, the case in which the adversary can train and
test under the exact same conditions, is used as a baseline for comparison. We
then compare the accuracy obtained in Step 2 with this baseline. We specify
the details of the cross-validation in Step 1 and the testing in Step 2 later in
this section.

Classifiers designed for WF attacks are based on features extracted from the
length, direction and inter-arrival times of network packets, such as unique
number of packet lengths or the total bandwidth consumed. The variables
we evaluate in this section affect traffic features and therefore may affect each
classifier in a different manner (cf., [31]). For the present study we tried to
pick a classifier for each of the learning models and sets of features studied in
prior work. In Table 3 we list the classifiers that we have evaluated.

Table 3: Classifiers used for the evaluation.

Name Model Features
H [11] Naive Bayes Packet lengths

Packet lengths
P [22] SVM Order

Total bytes
Total time

D [9] N-grams Up/Downstream bytes
Bytes in traffic bursts

W [32] SVM (Fast-Levenshtein) Cell traces
T Decision tree Same features as P

We observed that the relative accuracy changes are consistent across the
classifiers and the variables we evaluated. In most cases, classifier W performed

i
i

i
i

i
i

i
i

EVALUATION 79

better than the others. For this reason, our presentation of the results is focused
on classifier W.

Classifier W is based on the Fast Levenshtein-like distance [32]. We used this
classifier instead of the one based on the OSAD7 distance presented in the same
paper. Although the latter attained greater accuracy in Tor, it is considerably
slower and can become impractical in certain circumstances, as we will further
analyse in Section 6. Furthermore, for the OSAD distance we obtained over
90% accuracy scores in our control crawls and, as in the original paper, we
consistently observed a 20% decrease in accuracy when evaluating classifier
W. For this reason, we believe the results obtained with this classifier are
comparable with its more accurate counterpart.

For the evaluation of each classifier we followed a similar approach to the one
described by Dyer et al. First, we fixed the size of the world to a certain
number of pages (k). For each page of the training crawl, we selected ntrain
random batches and picked Ttrain traffic traces in total. For each page of
the testing crawl, we selected ntest random batches and picked Ttest traces in
total. We averaged the results by repeating each experiment m times, each
time choosing a different training and testing set. Then, the accuracy of the
classifier was calculated by Total correct predictions

Total test instances = p
mTtest

, where p is the total
number of correct predictions. We made sure that for the validation of the
control crawl, training and testing traces were never taken from the same batch.
The classification parameters are listed in Table 4.

Table 4: Description of classification parameters defined for an experiment.

Parameter Description
k Number of sites in the world.
ntrain/test Number of batches for training/testing.
Ttrain/test Number of instances for training/testing.
p Total number of predictions.
m Number of trials.

From now on, we refer to Acc control as the average accuracy obtained for the
m trials in control crawl (Step 1) and Acc test as the average accuracy for m
trials obtained in Step 2. In the results, the standard deviation of the accuracy
obtained for m trials is shown in parentheses next to the average value.

We also have designed our own attack based on decision tree learning and
using the features proposed by Panchenko et al. [22]. Decision tree learning

7Optimal String Alignment Distance

i
i

i
i

i
i

i
i

80 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

uses binary trees as data structures to classify observations. Leaves represent
class labels and nodes are conditions on feature values that divide the set
of observations. Features that better divide the data according to a certain
criterion (information gain in our case) are chosen first.

For these experiments we have extended Dyer et al.’s Peekaboo framework [9]
and the source code of the classifier presented by Wang and Goldberg [32].

4.4 Time

Webpages are constantly changing their content. This is reflected in the traffic
traces and consequently in the accuracy of the WF attack. In this section we
used crawls of the Alexa Top 100 pages taken at different instants in time to
evaluate the effect of staleness on WF.

0 20 40 60 800

20

40

60

80

100

Time (days)

A
cc
ur
ac
y
(%

)

Figure 4: Staleness of our data over time. Each data point is the 10-fold
crossvalidation accuracy of the classifier W which is trained using the traces from
t = 0 and tested using traces from 0 ≤ t ≤ 90. For every experiment m = 10,
ntrain = 9, ntest = 1, Ttrain = 36, ttest = 4 and k = 100.

For this experiment, we train a classifier using the traces of the control crawl,
collected at time t = 0, and test it using traces collected within 90 days of the
control crawl (0 ≤ t ≤ 90). Figure 4 shows the accuracy obtained for the W
classifier for crawls over the same list of URLs at different points in time. For
the rest of the classifiers we observed similar drops in accuracy. The first data
point is the accuracy of the control crawl, taken at t = 0. The second point is
taken 9 days after the control crawl (t = 9), and so on until the last data point
that corresponds to a test crawl taken 90 days later.

We observe that the accuracy drops extremely fast over time. In our experiments
it takes less than 10 days to drop under 50%. Since we observed such a drop

i
i

i
i

i
i

i
i

EVALUATION 81

in accuracy due to time, we picked control and test crawls for the following
experiments that fall within a period of 5 days.

This strong effect of time in the classifier’s accuracy poses a challenge to the
adversary who will need to train the classifier on a regular basis. Depending on
the size of the world that he aims to cover, the cost of training may exceed the
time in which data provides reasonable accuracy rates. We discuss this point in
more detail in Section 6.

4.5 Multitab browsing

In this experiment we evaluate the success of a classifier when trained on single
tab browsing, as in prior WF attacks, and tested on traces collected with
multitab browsing.

In order to simulate multitab browsing behaviour, we crawled the home pages
of Alexa Top 100 sites [1] while loading another webpage in the background.
The background page was loaded with a delay of 0.5-5 seconds and was chosen
at random from the same list, but kept constant for each batch. Then we train
five classifiers from prior work, P, H, D, W, T (described in Table 3), using single
tab traces of Alexa Top 100 webpages and test it using the multitab traces
we collected. We consider a classifier successful if it can identify either the
foreground page or the background page.

We observe a dramatic drop in the accuracy for all the classifiers with respect
to the accuracy obtained with the control crawl (when the classifiers are trained
and tested using single tab traces), even when the delay between the first page
and the background page was of 0.5 seconds (Figure 5 and Table 5). We also
observe a drop in the accuracy while we increase the size of the world, although
the change in the accuracy was similar for all classifiers ((Figure 5).

We notice very similar accuracies for classifiers P and T in this experiment. These
two classifiers are built using the same set of features but different learning
models. This might imply that the specific learning model is not as important
for a successful attack as the feature selection. Dyer et al. reported a similar
observation between Naive Bayes and SVM classifiers.

We also vary the time gap between the two pages to account for different delays
between opening the two tabs. Since the W classifier is based on an edit-distance,
we expect the distance between the observed traffic trace and the trace of any
of the two loaded pages to be smaller with respect to shorter delays, since there
would be less overlap between the traffic traces of the two loaded pages. However,
we do not observe a significant evidence that may support this hypothesis in

i
i

i
i

i
i

i
i

82 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

P H D

16
T P H D

32
T P H D

64
T P H D

100
T

0

20

40

60

80

100
A
cc
u
ra
cy

(%
)

67

50

41
34

10 8
5 4

11
5 2 2

7 4 2 1

73

61
54

48

17
10 7 6

61
58

45

37

13
6 4 4

Size of the world

Figure 5: Average accuracies of P, H, D, T classifiers for a delay of 0.5 sec between
the loading start times of the foreground page and the background page. Light
gray bars represent the accuracies of the control crawls (Step 1). We plot in
darker colour the accuracies obtained by training in the control and testing in
the multitab crawl (Step 2). Green intervals indicate the standard deviation of
the accuracy.

the evaluation for 0.5, 3 and 5 seconds of delay (Table 5) . The average page
load for the test crawl for the 5 second gap experiment is 15 seconds, leaving
on average 30% of the original trace uncovered by the background traffic. Even
in this case, the accuracy with respect to the control crawl drops by over 68%.

Table 5: Average accuracies and standard deviations (in parentheses) of classifier
W for different delays of starting the background page load. The parameters for
this experiment are: ntrain = 9, ntest = 1, Ttrain = 36, ttest = 4, m = 10 and
k = 100.

Delay Acc test Acc control
0.5 sec 9.8% (±3.1%) 77.08% (±2.72%)
3 sec 7.9% (±0.8%) 77.08% (±2.72%)
5 sec 8.23% (±2.32%) 77.08% (±2.72%)

So far we showed the results obtained when the adversary is able to identify
either the foreground page or the background page. We also consider the case

i
i

i
i

i
i

i
i

EVALUATION 83

where the user utilizes a countermeasure such as Camouflage [22]. In that
case, the user is not interested in the contents of the background page thus
the adversary is successful only if he is able to identify the foreground page.
The accuracies obtained using this definition halved the accuracies showed in
Table 5 (Acc test) and Figure 5.

4.6 Tor Browser Bundle versions

In this section we evaluate the effect of different TBB versions and properties
of TBB on WF. We evaluate the impact of having different TBB versions for
training and testing. In practice, many TBB versions coexist, largely because
of the lack of an auto-update functionality. It may be difficult for the attacker
to know the exact version that is being used by the user. We also changed
the configuration of Tor in the torrc to see how deviating from the default
configuration may affect the success of the attack.

TBB Versions

We evaluate different combinations of TBB versions 2.4.7, 3.5 and 3.5.2.1
for the control (training) and the test crawls. Table 6 shows the accuracy of
classifier W when it trained on traces from Alexa Top 100 sites collected using
TBB in the column and tested on the traces from the same sites collected using
the TBB in the rows.

For versions 3.5 and 3.5.2.1 we observe high accuracies of W independently of the
training and testing choices. This may imply that the countermeasure based on
request randomization integrated in the TBB [23] may not be effective. On the
other hand, when we evaluate 2.4.7 we observe low accuracies for combinations
with 3.5. This is probably due to the major differences between the two versions.
Version 3.5.2.1 is only a subversion of the TBB 3.5 which does not incorporate
as many changes as the difference between 3.5 and 2.4.7.

TBB properties

We vary the following properties: UseEntryGuards and NumEntryGuards.
UseEntryGuards indicates the policy for entry guard selection. It can take the
following two values: enabled, Tor selects three entry guards for a long period
of time; or disabled, picks one entry guard at random every time it builds a new
circuit. NumEntryGuards sets the number of entry guards that will be available
for the construction of a circuit (Default: 3). Note that even though we specify

i
i

i
i

i
i

i
i

84 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

Table 6: Entry in row X, column Y corresponds to the Acc Test (Step 2) and
standard deviation (in parentheses) obtained by training in TBB version X
and testing in TBB version Y . The configuration for these experiments is:
ntrain = 9, ntest = 1, Ttrain = 36, ttest = 4, m = 10 and k = 100.

TBB 2.4.7 (Test) 3.5 (Test) 3.5.2.1 (Test)
2.4.7 (Train) 62.70% (±2.8%) 29.93% (±2.54%) 12.30% (±1.47%)
3.5 (Train) 16.25% (±4.51%) 76.38% (±4.97%) 72.43% (±3.22%)

3.5.2.1 (Train) 6.51% (±1.15%) 66.75% (±3.68%) 79.58% (±2.45%)

a value for these variables, we clean the Tor data directory after each batch
crawl and, therefore, entry guards possibly change across batches.

We trained and tested on the control crawl for three different pairs of values
(only Step 1), listed in Table 7. The default configuration is to choose an
entry guard from a list of three possible entry guards (shown in the first row
of Table 7). We also evaluated the setting used by Wang and Goldberg [32],
which consists in disabling UseEntryGuards (second row in Table 7). Finally,
we enabled UseEntryGuards but used a list of only one possible entry guard
(third row in Table 7).

Table 7: Accuracy for different entry guard configurations. For these experiments
we used the following parameters: ntrain = 9, ntest = 1, Ttrain = 36, ttest = 4,
m = 10 and k = 100.

Entry guard config. Acc control
NumEntryGuards = 3 64.40% (±3.60%)
UseEntryGuards = 1
UseEntryGuards = 0 62.70% (±2.80%)
NumEntryGuards = 1 70.38% (±11.70%)
UseEntryGuards = 1

In Table 7 we summarize the results for these three different configurations using
classifier W. We can see that the standard deviation increases significantly for
the case where we fix one entry guard. Even though we fix the entry guard for
all circuits in a batch, since we remove the Tor data directory after each batch,
we force the entry guard to change. On the other hand, allowing Tor to pick a
different entry guard for each circuit results in a more balanced distribution
because it is more likely that the same entry guards are being used in each
single batch, thus there is lower variance across batches. We must clarify that

i
i

i
i

i
i

i
i

EVALUATION 85

these results are not concluding and there may be a different explanation for
such difference in standard deviation.

4.7 Network

Another important variable that is being ruled out by the assumptions described
in the previous section is the Internet connection. We suspect that it is unrealistic
to assume the adversary is able to train using the same exact Internet connection
as the user, especially in the non-targeted attack. For that, he might need more
capabilities than the ones included in the basic model.

In this section we study the effect of different network locations on the accuracy
of the W classifier. To that end, we crawled in three networks located in cities
in different continents: Leuven, New York and Singapore.

Table 8: Accuracy for different network locations. The Acc test (Step 2)
is calculated by training on data from Location Train and testing in data
from Location Test. The parameters for the setting of these experiments are:
ntrain = 9, ntest = 1, Ttrain = 36, ttest = 4, m = 10 and k = 100.

Loc. Train Loc. Test Acc test Acc control
Leuven New York 8.83% (±2.87%) 66.95% (±2.87%)
Leuven Singapore 9.33% (±0.98%) 66.95% (±2.87%)

Singapore New York 68.53% (±3.24%) 76.40% (±5.99%)

Our results show that the accuracy drop between the crawls training on Leuven
and testing in one of the other two locations is relatively greater than the
accuracy drop observed in the experiments between Singapore and New York.
Since the VM in Leuven is located within a university network and the other
two VMs in data centers belonging to the same company, we attribute this
difference to the fact that data center Internet connections tend to be closer
to the Internet backbone. This could account for similar properties in the
connection of the VMs in New York and Singapore that helped the classifier
matching training and testing instances.

4.8 The importance of false positives

In this section we evaluate the open-world scenario in which an adversary
monitors a small subset of the total number of pages that a user can visit, thus
cannot train a classifier using every possible page.

i
i

i
i

i
i

i
i

86 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

Open-world

In the open-world scenario the adversary monitors a small number of pages
and trains a classifier on traffic traces of both monitored and non-monitored
pages. Following the approach described by Wang et al. [32], we assume the
adversary monitors four pages: google.com, facebook.com, wikipedia.org and
twitter.com and the rest of the pages in the Alexa Top 100 URLs are not
monitored. We train a classifier using 36 traces for each of the Alexa Top 100
URLs, including the URLs of our monitored pages. To show the accuracy of the
classifier in a true open-world scenario, we test it using four traces for each of
the monitored sites plus one trace for each of the sites ranging from Alexa rank
151 to 34,710. For the classification, we assume the attacker is only interested
in learning whether the user is visiting a monitored page or not, and not the
exact URL that the user is visiting.

The classifier W offers an accuracy over 90%, a true positive rate (TPR) of 80%
that is almost constant, and the false positive rate (FPR) tends to 2.6% when
we increase the size of the world (Figure 6).

The base rate fallacy

Prior WF studies used accuracy-based metrics to measure the success of the
WF attack in the open-world. This approach however neglects the base rate or
prior, that is the probability of a user visiting a monitored page a priori. As it
has been pointed out recently within the Tor community [24], this constitutes a
bias in the evaluation of the WF attack called the base rate fallacy. Despite
reporting high accuracies and low FPR when the prior is low the success of the
attack can be significantly lower.

In contrast to prior work, we measure the success of the attack in the open-world
using the Bayesian detection rate (BDR). The BDR is defined as the probability
that a traffic trace actually corresponds to a monitored webpage given that the
classifier recognized it as monitored.

google.com
facebook.com
wikipedia.org
twitter.com

i
i

i
i

i
i

i
i

EVALUATION 87

0K 5K 10K 15K 20K 25K 30K 35K10−3

10−2

10−1

100

Size of the world

TPR
FPR
BDR

(uniform)

Figure 6: BDR in a uniformly distributed ∼35K open-world.

Using the Bayes theorem, the BDR is expressed as

P (M | C) = P (C |M) P (M)
P (M) P (C |M) + P (¬M) P (C | ¬M) ,

where M and C are the random variables of a webpage being monitored and a
webpage being detected by the classifier as monitored respectively. We use the
TPR as an approximation of P (C |M) and the FPR to estimate P (C | ¬M).

In Figure 6, we show the BDR with assuming a uniform distribution of web
pages (P (M) = |Monitored|

|World|) along with the TPR and FPR of the classifier W

for different sizes of the world. We observe that the BDR tends to zero as the
size of the world increases. For a world of size 30K, which is a rather small
world compared to the total size of the Web, the BDR is 0.4%. This means that
there was a 0.4% probability that the classifier made a correct classification,
and 99.6% of the times the adversary would wrongly conclude that the user was
accessing a monitored page.

Nevertheless, assuming a uniform distribution of pages introduces a statistical
bias because it underestimates the probability of visiting popular pages. In
order to give a more accurate estimation of the prior we extracted statistics
about visits from the ALAD dataset. In particular, we measured frequency
with which the users requested the URLs of the four monitored pages and its
domains. We obtained P (M) = 0.1852 for domains and P (M) = 0.0352 for
homepages. We found that in our case, where the attacker only identifies home
pages, the BDR tends to just 53.1% (Figure 7).

i
i

i
i

i
i

i
i

88 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

0K 5K 10K 15K 20K 25K 30K 35K
0

0.2

0.4

0.6

0.8

1

Size of the world

TPR
FPR
BDR

(domains)
BDR

(popular)
BDR

(non-popular)

Figure 7: Evaluation of the BDR in a ∼35K open-world for multiple values of
the prior P (M). According to the ALAD data set, P (M) = 0.18 for 4 popular
domains (google.com, facebook.com, twitter.com and wikipedia.org); P (M) =
0.03 for popular homepages and P (M) = 0.005 for non-popular homepages (4
random pages from ALAD with Alexa rank > 500).

We believe that a real-world adversary would not monitor homepages such as
google.com or facebook.com. As a more plausible WF attack we have in mind a
nation state-like adversary who is interested in identifying the access to specific
pages that are difficult to block, such as an entry in a whistle-blower’s blog
hosted in a different country. These pages would presumably have a lower base
rate than pages listed in Alexa.

To investigate the consequences of a very low prior we also calculated the BDR
for monitoring a set of non-popular pages. We counted the number of visits
in ALAD for 4 random pages that have a rank higher than 500 in Alexa, such
as careerbuilder.com (rank 697) and cracked.com (rank 658). As expected,
with a prior of 0.005 the BDR is much lower (marked with circles in Figure 7)
and tending to 0.13%. Yet, note that these are just upper bounds because these
monitored pages appear in the Alexa list and might be considered popular. We
suspect that BDR for even more unpopular pages would be so low that would
render a WF attack ineffective in this scenario.

careerbuilder.com
cracked.com

i
i

i
i

i
i

i
i

EVALUATION 89

User’s browsing habits

In this section, we study the performance of a classifier that is trained on Alexa
Top 100 sites and test it using real-world user visited sites. The goal is to check
how successful an adversary, trained according to prior WF attacks, would be
to find suspected pages on a set of pages a real-world user browsed.

We used the logs of three randomly chosen users from the ALAD and randomly
picked 100 URLs from each. We crawled the URLs and collected data to feed
the W classifier. During classification we mapped the test URLs to their top level
domains. For example, dell.msn.com was mapped to msn.com. We chose to do
this to not to overwhelm the classifier with false positives when it matches an
inner page with the homepage. The results, summarized in Table 9 show a clear
failure of the classifier in identifying the pages that these users were browsing.

Table 9: TPR and FPR for each of the users using a classifier trained on 36
traces from Alexa Top 100 sites and tested on randomly chosen 100 sites visited
by ALAD User 3, 13 and 42. Here, ntrain = 4, ntest = 1, Ttrain = 36, ttest = 4,
m = 10 and k = 100.

ALAD User TP FP
User 3 38/260 362/400
User 13 56/356 344/400
User 42 3/208 397/400

Note that the true positive rate is the number of correct predictions over the
number of predictions in which the page can be found in Alexa. The false
positive rate is calculated as the number of misclassifications over the total
number of predictions.

One possible reason for low TPR is due to the effect of inner pages. Inner
pages are pages in the website that are not the homepage. We distinguish
between two types of inner pages: (i) private, only accessible to the user
through authentication (e.g., pages in Facebook or email accounts), and (ii),
public, that is pages that are accessible for any web user but that it is not the
homepage of the site. Other work has claimed that private inner pages do not
matter because the TBB cleans session storage and a user has to load the login
page after each session. However, we believe it is common that users leave the
TBB open and visit the same inner page repeatedly within one single session.
The high FPR is because the supervised classifier cannot output ‘Unknown’ for
pages that do not exist in the training set, thus chooses to output a page in the
training set that is the closest to the test page.

dell.msn.com
msn.com

i
i

i
i

i
i

i
i

90 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

Figure 8: Estimated probability scores of the true positive and false positive
instances during the open-world experiment (Section 4.8). Probability scores for
the false positives are much lower than that of true positives. With a threshold
∼0.2 most of the false positives can be discarded without reducing the true
positive rate.

5 Classify-Verify

In standard supervised learning, a classifier chooses at least one class even when
the target class is unavailable. For example, in the open-world scenario when
a classifier is trained on web pages A, B and C and tested on page D, it will
choose a page from A, B and C, although the original page (D) is absent. In
the open-world experiment this introduces many false positives.

During classification, a classifier can output its confidence in the classification
decision in terms of posterior probability. Although standard SVM classifier
(classifier W) does not output probabilities, an additional sigmoid function can
be trained to map the SVM outputs into probabilities8. One way to reduce the
false positive rate is to inspect the probabilities estimated by the classifier and
reject the classifier’s decision when the probabilities are lower than a certain
threshold. This is a form of Abstaining classification [5]. In this paper, we use
the modified “Classify-Verify” approach as discussed by Stolerman et al. [26].

In the open-world experiment (Section 4.8), the probability scores for true
positive instances are higher than the false positive instances (Figure 8). Note
that, this was a multiclass classification with 100 classes, so the random
probability score of an instance is 0.01.

8In LibSVM, this can be achieved by simply using the -b option during training and
testing [17].

i
i

i
i

i
i

i
i

CLASSIFY-VERIFY 91

The Classify-Verify approach adds an extra verification step after the
classification. In our case, the verification process relies on a threshold that
can be determined by training (Algorithm 1). When a page (D) is tested
using the classifier, it outputs the probability scores of D == Ai where
Ai ∈ A, sites in the training set. We use two verification scores based on
these estimated probabilities: the maximum estimated probability, P1, and the
difference between the maximum probability and the second highest probability,
Diff = P1 − P2. If the verification score of D is less than the determined
threshold, the classifier’s output will be rejected. Unlike Stolerman et al. [26],
we maximize Fβ instead of F1 to choose threshold by adjusting weights for
precision and recall. β ≤ 0.5 achieves fewer false positives at the cost of true
positives than β > 0.5.

Algorithm 1 Modified Classify-Verify
Input: Test page D, suspect pages A = A1, ..An and probability scores
Output: AD if AD ∈ A and ‘Unknown’ otherwise
. Train a classifier
CA → classifier trained on A
VA → verifier for A
. Calculate threshold for the verifier
t→ threshold maximizing Fβ score
. Test page D
Classify D
PD → Verification score
if PD >= t then

Accept the classifier’s output and return it
else

Reject the classifier’s output and return ‘Unknown’
end if

5.1 Evaluation and result

We evaluate the Classify-Verify approach on the results of the open-world and
ALAD experiments. To determine the threshold for a dataset, we use 10-fold
cross-validation, where a threshold is determined by using 90% of the data and
then tested on the remaining 10%. For Fβ score, we choose β = 0.5 as we want
to give more priority to precision than recall. We experimented with other β
values and F0.5 finds the best threshold (0.21 for open-world) that gives low
false positives without reducing the TPR.

i
i

i
i

i
i

i
i

92 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

Our result shows that Classify-Verify reduces the number of false positives
significantly without reducing the TPR. The new FPR after Classify-Verify
is ∼ 0.68. In the largest experiment (with ∼ 35K pages) the number of false
positive reduces from 647 to 235, which is over 63% drop. The FPR can be
reduced even further by sacrificing the TPR. The threshold estimated using
Diff = P1− P2 and P1 both perform similarly in our case.

Similarly for the users in ALAD, we determine the threshold using cross-
validation. The number of false positive drops significantly (Table 10) over 50%
for each of the three users.

Table 10: Classify-Verify result on the ALAD users. The number of FP drops
by around 200.

ALAD User TP FP New TP New FP
User 3 38/260 362/400 31.2/260 107.6/400
User 13 56/356 344/400 26.8/356 32/400
User 42 3/208 397/400 1.0/208 41.2/400

The adversary can also use a pre-determined threshold instead of computing it
every time. For example, in the open-world case if we had just chosen a threshold
of 0.5 we could have discarded even more false positives with a little drop in
true positives. Other more sophisticated approaches can be applied to choose a
threshold, for example measuring the variance between intra- and inter-class
instances. However, even after classify-verify the number false positive is lower
than before but still very high. The most difficult cases are the high confidence
false positives which indicate the cases where the features from censored and
uncensored pages overlap.

We computed the BDR before and after applying the verification step. We
used the estimation of the prior based on the prevalence of the homepages of
the monitored websites in the ALAD dataset. The results show that the BDR
doubles when we use the Classify-Verify approach. However, the BDR is still
very low due to the exceptionally high FPR in this specific setting. For this
reason, we conclude that Classify-Verify does not solve the issue completely but
can be useful to partially mitigate the impact of false positives.

6 Modeling the adversary’s cost

In this section, we model the cost of an adversary to maintain a WF system
and discuss the scenarios in which the attack is most threatening. Current

i
i

i
i

i
i

i
i

MODELING THE ADVERSARY’S COST 93

research considers only one scenario where the adversary has the maximum
information about users. Even when the adversary has all possible information,
collecting, maintaining and updating these information can be costly. For
example, our anecdotal experience shows that the traffic footprint of Google
homepage significantly changes due to different images (doodles) embedded on
the page.

A typical WF system requires 4 tasks: data collection, training, testing and
updating.

Data collection cost: At first the adversary needs to collect data from the
training pages. In order to maximize the classifier accuracy, the adversary may
want to train with different localized versions of the same webpage and collect
these under different settings, e.g., different TBB versions, user settings, entry
guard configurations. If we denote the number of training pages by n, and
assume that on average webpages have m versions that are different enough
to reduce the classifier’s accuracy, the number of pages the adversary needs
to collect is D = n×m× i, where i is the number of instances per page. We
denote the data collection cost as col(D). This cost includes both network and
storage costs.

Training Cost: In the training phase an adversary needs to train his classifier
with the collected data. The training cost includes the cost of measuring features
F and training a classifier C. So the cost of training the system once would be
train(D,F,C). If c denotes the cost of training with a single instance of a traffic
trace, then the cost of training the system once would be train(D,F,C) = D×c.

Testing Cost: For testing a trace, the adversary needs to collect test data T ,
extract features F and test using the classifier C. Let v denote the number of
monitored victims and p denote the average number of pages accessed by each
victim per day. Then the amount of test data is T = v × p. The total test cost
is col(T) + test(T, F,C).

Updating Cost: To maintain the performance of the classifier, the adversary
needs to update the system over time. For example the adversary might try to
keep the accuracy of the classifier above a certain threshold (e.g., 50%). The
updating costs include the cost of updating the data (D), measuring the features
(F) and retraining the classifier (C), which is denoted as update(D,F,C). If,
on average, webpages change d day periods, the daily updating cost would be
update(D,F,C)

d .
Then, the total cost of an adversary to maintain a WF system is:

init(D, F, C, T) = col(D) + train(D, F, C) + col(T) + test(T, F, C)

i
i

i
i

i
i

i
i

94 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

cost(D, F, C, T) = init(D, F, C, T) + update(D, F, C)
d

To give a more concrete example, our experiment to measure the effect of time
to classifier accuracy, we found that after d = 10 days the accuracy attained was
under 50% and thus the adversary would have needed to update his data. The
update(D,F,C)

10 would not show the impossibility of a successful WF attack, but
it could show that to maintain such an attack can be prohibitively expensive
even for adversaries with high level of resources.
The adversary could also have extra costs before the training and the data
collection. For example, the attacker could try to discover background
information about the victim(s) that can be used to increase the efficiency
of the attack. He could also try to discover properties about the Internet
connection of the user passively. However, in perspective of the results of the
previous sections, the amount of background information required to mitigate the
effect of noise in the data can be much larger than previously expected. Further,
a question that lingers is to what extent, given such amount of background
information, the WF attack is still necessary.

7 Conclusion and future work

In this paper we studied the practical feasibility of WF attacks. We are not
dismissing WF as a threat, but we suggest that more attention should be paid
to the practicality of the scenarios in which these attacks are evaluated.

We studied a number of variables in isolation including website variance over
time, multitab browsing behavior, TBB version, Internet connection, and the
open world. When each of these assumptions are violated, the accuracy of the
system drops significantly, and we have not examined in depth how the accuracy
is impacted when multiple assumptions are violated.

Our results showed that success of a WF adversary depends on many factors
such as temporal proximity of the training and testing traces, TBB versions
used for training and testing, and users’ browsing habits, which are commonly
oversimplified in the WF models. Therefore, for most cases it seems that the non-
targeted attack is not feasible given the sophistication level of current attacks.

There may be some exceptions in the case where a site of interest, perhaps a
whistleblowing site, is particularly unique in its features and stable over time.
Even the case of targeting a user is non-trivial, as these aspects of their behavior
must be observed a priori or guessed correctly for WF to be a significant threat.
Some users’ behavior may be more susceptible to these attacks than others. In
that case, the adversary could also have enough background knowledge to mount

i
i

i
i

i
i

i
i

REFERENCES 95

a more targeted attack and reduce the false positive rate that we demonstrated
empirically to be critical for the success of the WF adversary.

We believe that further research on evaluating the common assumptions of the
WF literature is important for assessing the practicality and the efficacy of
the WF attacks. Future work in developing WF attacks against Tor should
also evaluate their proposed attacks in practical scenarios, so that the Tor
stakeholders and the research community have a more realistic assessment of
the threat they are facing.

References

[1] Alexa. Alexa Top 500 Global Site. http://www.alexa.com/topsites, 2014.

[2] George Dean Bissias, Marc Liberatore, David Jensen, and Brian Neil
Levine. "Privacy vulnerabilities in encrypted HTTP streams". In Privacy
Enhancing Technologies Symposium (PETS), pages 1–11. Springer, 2006.

[3] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching
from a distance: Website fingerprinting attacks and defenses. In ACM
Conference on Computer and Communications Security (CCS), pages 605–
616. ACM, 2012.

[4] Heyning Cheng and Ron Avnur. Traffic analysis of ssl encrypted
web browsing. Project paper, University of Berkeley, 1998. Available
at http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/
final-reports/ronathan-heyning.ps.

[5] C Chow. On Optimum Recognition Error and Reject Tradeoff. IEEE
Transactions on Information Theory, 16(1):41–46, 1970.

[6] Scott E Coull, M Patrick Collins, Charles V Wright, Fabian Monrose,
Michael K Reiter, et al. On Web Browsing Privacy in Anonymized NetFlows.
In USENIX Security Symposium, pages 339–352. USENIX Association,
2007.

[7] George Danezis. Traffic Analysis of the HTTP Protocol over TLS.
Unpublished draft, 2009. Available at: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.92.3893&rep=rep1&type=pdf.

[8] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security
Symposium, pages 303–320. USENIX Security Symposium, 2004.

http://www.alexa.com/topsites
http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.3893&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.3893&rep=rep1&type=pdf

i
i

i
i

i
i

i
i

96 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

[9] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton.
Peek-a-Boo, I still see you: Why efficient traffic analysis countermeasures
fail. In IEEE Symposium on Security and Privacy (S&P), pages 332–346.
IEEE, 2012.

[10] David M Goldschlag, Michael G Reed, and Paul F Syverson. Hiding
Routing Information. In Information Hiding, pages 137–150. Springer,
1996.

[11] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website
fingerprinting: attacking popular privacy enhancing technologies with the
multinomial Naïve-Bayes classifier. In ACM Workshop on Cloud Computing
Security, pages 31–42. ACM, 2009.

[12] Andrew Hintz. Fingerprinting websites using traffic analysis. In Privacy
Enhancing Technologies Symposium (PETS), pages 171–178. Springer,
2003.

[13] A. Houmansadr, C. Brubaker, and V. Shmatikov. The Parrot Is Dead:
Observing Unobservable Network Communications. In IEEE Symposium
on Security and Privacy (S&P), pages 65–79. IEEE, 2013.

[14] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson.
Users Get Routed: Traffic Correlation on Tor by Realistic Adversaries.
In ACM Conference on Computer and Communications Security (CCS),
pages 337–348. ACM, 2013.

[15] Patrick Juola, John I Noecker Jr, Ariel Stolerman, Michael V Ryan,
Patrick Brennan, and Rachel Greenstadt. A Dataset for Active Linguistic
Authentication. In IFIP WG 11.9 International Conference on Digital
Forensics. Springer, 2013.

[16] Marc Liberatore and Brian Neil Levine. "Inferring the source of
encrypted HTTP connections". In ACM Conference on Computer and
Communications Security (CCS), pages 255–263. ACM, 2006.

[17] LibSVM. Multi-class classification (and probability output) via error-
correcting codes. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools,
2014.

[18] Liming Lu, EC Chang, and MC Chan. Website fingerprinting and
identification using ordered feature sequences. In European Symposium
on Research in Computer Security (ESORICS), pages 199–214. Springer,
2010.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools

i
i

i
i

i
i

i
i

REFERENCES 97

[19] Shailen Mistry and Bhaskaran Raman. Quantifying Traffic Analysis of
Encrypted Web-Browsing. Project paper, University of Berkeley, 1998.
Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.10.5823&rep=rep1&type=pdf.

[20] Mozilla Labs. Test Pilot: Tab Open/Close Study: Results.
https://testpilot.mozillalabs.com/testcases/tab-open-close/
results.html#minmax. (accessed: March 17, 2013).

[21] S.J. Murdoch and G. Danezis. Low-Cost Traffic Analysis of Tor. In IEEE
Symposium on Security and Privacy (S&P), pages 183–195. IEEE, 2005.

[22] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.
Website fingerprinting in onion routing based anonymization networks.
In ACM Workshop on Privacy in the Electronic Society (WPES), pages
103–114. ACM, 2011.

[23] Mike Perry. Experimental defense for website traffic fingerprinting.
Tor Project Blog. https://blog.torproject.org/blog/experimental-
defense-website-traffic-fingerprinting, 2011. (accessed: October
10, 2013).

[24] Mike Perry. A Critique of Website Traffic Fingerprinting Attacks. Tor
project Blog. https://blog.torproject.org/blog/critique-website-
traffic-fingerprinting-attacks, 2013. (accessed: December 15, 2013).

[25] Y Shi and K Matsuura. Fingerprinting Attack on the Tor Anonymity
System. In Information and Communications Security, pages 425–438.
Springer, 2009.

[26] Ariel Stolerman, Rebekah Overdorf, Sadia Afroz, and Rachel Greenstadt.
Classify, but verify: Breaking the closed-world assumption in stylometric
authorship attribution. In IFIP Working Group 11.9 on Digital Forensics.
IFIP, Springer, 2014.

[27] Qixiang Sun, Daniel R Simon, Yi-Min Wang, Wilf Russel, Venkata N.
Padmanabhan, and Lili Qiu. Statistical identification of encrypted web
browsing traffic. In IEEE Symposium on Security and Privacy (S&P),
pages 19–30. IEEE, 2002.

[28] Tor project. Users statistics. https://metrics.torproject.org/
users.html. (accessed: March 20, 2013).

[29] Tor project. Welcome to Stem! Stem 1.1.1 Documentation. https:
//stem.torproject.org, 2014.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.5823&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.5823&rep=rep1&type=pdf
https://testpilot.mozillalabs.com/testcases/tab-open-close/results.html#minmax
https://testpilot.mozillalabs.com/testcases/tab-open-close/results.html#minmax
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks
https://metrics.torproject.org/users.html
https://metrics.torproject.org/users.html
https://stem.torproject.org
https://stem.torproject.org

i
i

i
i

i
i

i
i

98 A CRITICAL EVALUATION OF WEBSITE FINGERPRINTING ATTACKS

[30] Christian von der Weth and Manfred Hauswirth. DOBBS: Towards a
Comprehensive Dataset to Study the Browsing Behavior of Online Users.
CoRR, abs/1307.1542, 2013.

[31] T Wang and I Goldberg. Comparing Website Fingerprinting Attacks and
Defenses. 2014. Technical report.

[32] Tao Wang and Ian Goldberg. Improved Website Fingerprinting on Tor.
In ACM Workshop on Privacy in the Electronic Society (WPES), pages
201–212. ACM, 2013.

i
i

i
i

i
i

i
i

APPENDICES 99

A Appendices

A.1 List of used crawls

Table 11: Complete list of crawls.

Crawl Name Date Network Version Size Batches Accuracy control Std

140203_042843 2/3/2014 Leuven 3.5 100 10 77.08% ± 2.72%
140203_040706 2/3/2014 Leuven 2.4.7 Alpha 1 100 10 62.70% ± 2.80%
140209_162439 2/9/2014 New York 2.4.7 Alpha 1 100 10 67.53% ± 3.91%
140214_050040 2/14/2014 Singapore 3.5 100 10 78.70% ± 4.01%
140220_042351 2/20/2014 New York 2.4.7 Alpha 1 100 10 66.05% ± 3.42%
140325_115501 3/25/2014 New York 3.5.2.1 100 10 79.58% ± 2.45%
140329_194121 3/29/2014 Singapore 3.5.2.1 100 10 76.40% ± 5.99%
140329_191630 3/29/2014 Leuven 3.5 100 10 66.95% ± 2.87%
140418_145104 4/18/2014 Leuven 3.5 100 6 54.46% ± 21.15%
140426_021609 4/26/2014 Singapore 3.5 100 10 76.93% ± 3.86%
140427_140222 4/27/2014 Leuven 3.5 100 10 71.35% ± 9.09%
140506_224307 5/7/2014 New York 3.5 100 10 77.05% ± 6.29%
140508_144031 5/8/2014 New York 3.5 100 10 72.73% ± 3.18%
140329_184252 3/29/2014 Leuven 3.5 100 10 70.38% ± 11.72%
140210_201439 2/10/2014 Leuven 2.4.7 Alpha 1 100 10 66.88% ± 5.16%
140214_040009 2/14/2014 Leuven 3.5 100 5 64.40% ± 3.60%

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Publication

Toward an Efficient Website
Fingerprinting Defense

Publication Data

Juarez, M., Imani, M., Perry, M., Diaz, C., and Wright,
M. Toward an efficient website fingerprinting defense. In European
Symposium on Research in Computer Security (ESORICS) (2016),
Springer, pp. 27–46

Contributions

• Principal author.

101

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Toward an Efficient Website Fingerprinting Defense

Marc Juarez1, Mohsen Imani2, Mike Perry3, Claudia Diaz1, and
Matthew Wright2

1 KU Leuven, ESAT/COSIC and iMinds, Leuven, Belgium,
2 The University of Texas at Arlington, TX, USA, ,

3 The Tor Project, https://torproject.org

Abstract. Website Fingerprinting attacks enable a passive
eavesdropper to recover the user’s otherwise anonymized web
browsing activity by matching the observed traffic with prerecorded
web traffic templates. The defenses that have been proposed
to counter these attacks are impractical for deployment in real-
world systems due to their high cost in terms of added delay and
bandwidth overhead. Further, these defenses have been designed
to counter attacks that, despite their high success rates, have
been criticized for assuming unrealistic attack conditions in the
evaluation setting. In this paper, we propose a novel, lightweight
defense based on Adaptive Padding that provides a sufficient
level of security against website fingerprinting, particularly in
realistic evaluation conditions. In a closed-world setting, this
defense reduces the accuracy of the state-of-the-art attack from
91% to 20%, while introducing zero latency overhead and less than
80% bandwidth overhead. In an open-world, the attack precision
is just 1% and drops further as the number of sites grows.

1 Introduction

Website Fingerprinting (WF) is a type of traffic analysis attack that allows
an attacker to recover the browsing history of a client. The attacker collects a
database of web traffic templates and matches the client’s traffic with one of
the templates. WF has been shown to be effective in a wide variety of scenarios
ranging from HTTPS connections [14], SSH tunnels [8], one-hop proxies [9],
VPNs [18] and even anonymous communication systems such as Tor [4].

The success of WF against Tor, one of the largest deployed systems for
anonymously browsing the Web [19], is particularly problematic. Tor offers
stronger security than one-hop proxies and it is meant to protect against

103

i
i

i
i

i
i

i
i

104 TOWARD AN EFFICIENT WEBSITE FINGERPRINTING DEFENSE

attacks like WF that require only a local eavesdropper or a compromised guard
node. However, recent WF attacks achieve more than 90% accuracy against
Tor [4, 22,23], thus breaking the anonymity properties that it aims to provide.

To counter these attacks, a broad range of defenses has been proposed. The
key building block of most of these defenses is link padding. Link padding
adds varying amounts of delays and dummy messages to the packet flows to
conceal patterns in network traffic. Given that bandwidth and latency increases
come at a cost to usability and deployability, these defenses must strive for
a trade-off between security and performance overheads. Unfortunately, the
state-of-the-art link-padding defenses are not acceptable for use in Tor: they
increase latency, delaying page loads between two and four times and impose
bandwidth overheads between 40% [3] and 350% [7] on average.

We note that any delays introduced by a defense are a concern for low-latency
systems, as they have a direct impact on the usability of the system in
interactive applications. Moderate bandwidth overheads may also impact
the user experience but the load factor needs to increase substantially before
being noticeable by users. Moreover, the Tor network has spare bandwidth
on the ingress edge of the network, making it possible to afford a client-side
defense that consumes a moderate amount of bandwidth. In this work, we thus
explore the design space of effective link-padding defenses with minimal latency
overhead and modest bandwidth overhead.

The contributions of the following sections are:

An analysis of the suitability of WF defenses for deployment in Tor.
In Section 2, we define the threat model and give a background of existing
attacks and defenses. Based on this literature review, we discuss the suitability
of these defenses for an implementation in Tor.

A lightweight defense against WF attacks. We have adapted Adaptive
Padding to combat WF in Tor and dubbed this new defense Website Traffic
Fingerprinting Protection with Adaptive Defense (WTF-PAD). Section 3 gives
its specification, and Section 4 presents an evaluation and a comparison of
WTF-PAD with the existing WF defenses. We find that WTF-PAD is effective
and has reasonable overheads for a system like Tor.

An evaluation of the defense in realistic scenarios. Prior work has
shown that the accuracy of the WF attack decreases significantly when certain
assumptions about the setting or user behavior do not hold [10], but to the best
of our knowledge this is the first study that evaluates the effectiveness of a WF
defense in these scenarios. In Section 5, we show the results for two realistic
scenarios: (i) open-world, in which the attacker monitors a small set of web

i
i

i
i

i
i

i
i

WEBSITE FINGERPRINTING (WF) 105

Client

Attacker

Bridge

Tor network

Guard

Middle

Exit

Web

Figure 1: The WF adversary model considering Tor bridges.

pages and, (ii) multi-tab, where the users browse the pages using multiple tabs.
We show that for these scenarios, the defense substantially reduces the accuracy
of the state-of-the-art WF attack.

2 Website Fingerprinting (WF)

Tor is an overlay network that routes connections through three-hop circuits
using onion routing [6]. The onion routers encrypt the messages in layers so
that neither the relays nor localized network eavesdroppers can know both the
origin and the destination of a connection.

In this paper, we assume that the client connects to Tor through a bridge, a
volunteer-run proxy to the Tor network (see Figure 1). The adversary has
access to the communication at a point between the client and the bridge. The
adversary is local, meaning that he is unable to observe other parts of the
network, and passive: he can observe and record packets but cannot modify,
delay, drop or inject new packets. We also assume that the adversary cannot
learn anything about packet payloads due to the use of layered encryption.

Defensive padding is performed end-to-end between trusted endpoints, with the
adversary only having access to the padded traces. For this research, we assume
the bridge is trusted. This allows to implement the defense as a Pluggable
Transport (PT) [20], avoiding modifications in the Tor source code. Note this
model is equivalent for a client connecting to the trusted entry guard without a
bridge, but in that case the defense would need to be implemented at the guard.

The objective of the WF adversary is to determine what pages the user downloads
over Tor by looking at the network traces. Early works on this problem [9,18]
assumed a user model that could only access a small set of pages—an assumption

i
i

i
i

i
i

i
i

106 TOWARD AN EFFICIENT WEBSITE FINGERPRINTING DEFENSE

that is unlikely to be met in practice. This assumption is known as the closed-
world assumption, and it overly simplifies the problem to the point of being
irrelevant to most real-world settings. In contrast, the more realistic open-world
allows the user to visit any page and the attacker’s goal is to determine whether
the user downloads one of a small set of monitored pages. We have evaluated
both scenarios: the closed world favors the attacker and gives a lower bound of
the defense effectiveness, but our objective is to measure the performance of
the defense in realistic conditions.

WF attacks are a serious threat to Tor’s security: the adversary only needs the
ability to eavesdrop on the client’s link to the network, which can be achieved
with moderate resources. With the continuous improvement in WF classifier
accuracy over the past few years, this is a pressing concern. The first attack
against Tor obtained 3% accuracy with a Naive Bayes classifier [8] in a closed
world and without any WF countermeasures. However, the attack has been
revisited with more refined feature sets [16], and state-of-the-art attacks attain
over 90% accuracy [4, 15,22,23].

2.1 Defenses

Most of the defenses in the literature are theoretical designs without a
specification for an implementation. Only a few have been evaluated for
anonymous communications, and the only one that is currently implemented in
Tor does not work as expected. In this section, we review WF defenses proposed
in the literature and discuss their suitability for implementation in Tor.

Application-level defenses. These defenses work at the application layer.
HTTPOS modifies HTTP headers and injects HTTP requests strategically [12],
while Randomized Pipelining, a WF countermeasure currently implemented in
the Tor Browser, randomizes the pipeline of HTTP requests. Both defenses
have been shown to be ineffective in several evaluations [4, 10,22,23].

Supersequences and traffic morphing. Recent works have proposed
defenses based on generalizing web traffic traces [2, 22]. They create anonymity
sets by clustering pages and morphing them to look like the centroid of their
cluster. This approach aims to optimally reduce the amount of padding
needed to confound the attacker’s classifier. These defenses, as well as traffic
morphing techniques [11,24], have the shortcoming that require a database of
webpage templates that needs to be frequently updated and would be costly to
maintain [10].

i
i

i
i

i
i

i
i

ADAPTIVE PADDING 107

Constant-rate padding defenses. Dyer et al. evaluated the impact of
padding individual packets [7], finding that this is not sufficient to hide coarse-
grained features such as bursts in traffic or the total size and load time of the
page. Dyer et al. simulated a proof-of-concept countermeasure called BuFLO,
which used constant-rate traffic with fixed-size packets. The authors report
excessive bandwidth overheads in return for moderate security. The condition
to stop the padding after the transmission ends is critical to adjust the trade-off
between overheads and security. BuFLO stops when a page has finished loading
and a minimum amount of time has passed, not covering the size of a page that
lasts longer than the minimum time.

Tamaraw [3] and CS-BuFLO [3, 4], both attempt to optimize the original
design of BuFLO. Instead of setting a minimum duration of padding, Tamaraw
stops padding when the total number of transmitted bytes is a multiple of a
certain parameter. This approach groups webpages in anonymity sets, with
the amount of padding generated being dependent on the webpage’s total size.
Given the asymmetry of web browsing traffic, Cai et al. also suggest treating
incoming and outgoing traffic independently, using different packet sizes and
padding at different rates. Furthermore, the authors sketched CS-BuFLO as
a practical version of BuFLO, extended with congestion sensitivity and rate
adaptation. Following Tamaraw’s grouping in anonymity sets by page size, they
propose either padding up to a power of two, or to a multiple of the amount of
transmitted application data.

We question the viability of the BuFLO-based defenses for Tor. Their latency
overheads are very high, such as two-to-three times longer than without defense,
and the bandwidth overheads for BuFLO and CS-BuFLO are over 100%. In
addition, due to the popularity of dynamic web content, it is challenging to
determine when a page load completes, as needed in Tamaraw and CS-BuFLO.
Nevertheless, in this paper, we compare our system against these defenses
because they are the closest to meeting the deployment constraints of Tor.

3 Adaptive Padding

Adaptive Padding (AP) was proposed by Shmatikov and Wang to defend against
end-to-end traffic analysis [17]. Even though WF attacks are significantly
different from these end-to-end attacks, AP can be adapted to protecting
against WF due to its generality and flexibility. AP has the defender examine
the outgoing traffic pattern and generate dummy messages in a targeted manner
to disrupt distinctive features of the patterns — “statistically unlikely” delays
between packets. Shmatikov and Wang showed that with 50% bandwidth

i
i

i
i

i
i

i
i

108 TOWARD AN EFFICIENT WEBSITE FINGERPRINTING DEFENSE

overhead, the accuracy of end-to-end timing-based traffic analysis is significantly
degraded [17].

In the BuFLO family of defenses, the inter-arrival time between packets is fixed
and application data is delayed, if needed, to fit the rigid schedule of constant
packet timings. This adds delays in the common case that multiple real cells are
sent all at once, making this family of defenses ill-suited for a system like Tor,
as it would significantly harm user experience. By contrast, Adaptive Padding
(AP) does not delay application data; rather, it sends it immediately. This
minimal latency overhead makes AP a good candidate for Tor.

In the rest of this section, we describe AP and explain how we adapt it to
defend against WF attacks in Tor.

3.1 Design Overview

To clarify the notation adopted in this paper, we use outgoing to refer to the
direction from the PT instance running at the client to the PT at the bridge,
and conversely, incoming is the direction from the PT server to the client.

The basic idea of AP is to match the gaps between data packets with a
distribution of generic web traffic. If an unusually large gap is found in the
current stream, AP adds padding in that gap to prevent long gaps from being
a distinguishing feature. Shmatikov and Wang recognized the importance of
bursts in web traffic and thus developed a dual-mode algorithm. In burst mode,
the algorithm essentially assumes there is a burst of real data and consequently
waits for a longer period before sending any padding. In gap mode, the algorithm
assumes there is a gap between bursts and consequently aims to add a fake
burst of padding with short delays between packets. In this paper, we follow
Shmatikov and Wang and define a burst in terms of bandwidth: a burst is a
sequence of packets that has been sent in a short time period. Conversely, a
gap is a sequence of packets that are spread over a long timespan.

AP algorithm. The AP algorithm is defined by two histograms of delays that
we call HB (used in burst mode) and HG (used in gap mode). The histograms
have a set of bins that spans over the range of possible inter-arrival times. Each
bin contains a number of tokens, which can be interpreted as the probability of
selecting an inter-arrival time within the range of delays represented by that
bin. The last bin, which we dub the “infinity bin”, includes all possible values
greater than the second-to-last bin. For more details on how these histograms
are defined in WTF-PAD we refer the reader to Appendix A.1.

i
i

i
i

i
i

i
i

ADAPTIVE PADDING 109

AP implements the state machine shown in Figure 2 in each defense endpoint, i.e.
both PT client and server. For simplicity, let us consider just the client’s state
machine in the following explanation. The operation of the server is symmetrical.

S
wait

start B
t← HB

G
t← HG

R psh

snd(R)

t = inf

t expires

snd(D)

t = inf or
R psh
snd(R)

t expires

snd(D)

R psh

snd(R)

Figure 2: AP algorithm as a finite state machine as implemented in the PT
client. The events are in bold and the actions in italics. The action (snd(·))
refers to sending messages, either real (R) or dummy (D). The psh event means
a message pushed from the application (Tor browser) to the PT client.

Burst mode. As depicted in the diagram, AP starts idle (state S) until the
packet with the HTTP request is pushed from the browser (R). This causes it
to enter burst mode (state B), drawing a delay t from the HB histogram. Then
it starts to count down until either new data is pushed or t expires. In the first
case, the data is immediately forwarded, a new delay is sampled and the process
is repeated again, i.e. it remains in burst mode. Otherwise, a dummy message
(D) is sent to the other end and AP switches to state G (gap mode). The HB

histogram is built using a large dataset of web traffic, out of which we sample
the times between the end of a burst and the beginning of the following burst
(see Section 3.3). Therefore, while we are in a burst, the delays we sample from
HB will not expire until we find an inter-arrival time that is longer than typical
within a burst, which will make the delay expire and trigger the G state.

Gap mode. While AP is in state G, it samples from histogram HG and
sends dummy messages when the times it samples expire. The histogram for
gap mode, HG, is built from a sample of inter-arrival times within a burst in
traffic collected for a large sample of sites. That is, by sending packets with
inter-arrival times drawn from HG, we are able to generate fake bursts that
follow the timing distribution of an average burst. A transition from G back to
B occurs upon either sampling a token from the infinity bin or receiving a real
packet. Similarly, a transition from B to S happens when we sample a token
from the infinity bin.

i
i

i
i

i
i

i
i

110 TOWARD AN EFFICIENT WEBSITE FINGERPRINTING DEFENSE

Note that AP immediately forwards all application data. Since sending a real
packet means that the timeout expired, AP has to correct the distribution by
returning the token to its bin and removing a token from the bin representing
the actual delay. This prevents the combined distribution of padding and real
traffic from skewing towards short values and allows AP to adapt to the current
transmission rate [17]. If a bin runs out of tokens, to minimize its effect on the
resulting distribution of inter-arrival times, we remove tokens from the next
non-empty greater bin [17]. In case all bins are empty, we refill the histogram
with the initial sample.

3.2 WTF-PAD

We propose a generalization of AP called Website Traffic Fingerprinting Protec-
tion with Adaptive Defense (WTF-PAD). WTF-PAD includes implementation
techniques for use in Tor and a number of link-padding primitives that enable
more sophisticated padding strategies than the basic AP described above. These
features include:

Receive histograms. A key feature to make padding realistic is to send
padding messages as a response to messages received from the other end. In
WTF-PAD, we implement this by keeping another AP state machine that reacts
to messages received from the other PT endpoint: the PT client has a rcv event
when it gets a packet from the PT server. This allows us to encode dependencies
between incoming and outgoing bursts and to simulate request-response HTTP
transactions with the web server. Padding introduced by the rcv event further
distorts features on bursts, as just one packet in the outgoing direction might
split an incoming burst as considered by the attacks in the literature.

Control messages. WTF-PAD implements control messages to command
the PT server padding from the PT client. Using control messages, the client
can send the distribution of the histograms to be used by the PT server. This
way, the PT client is in full control of the padding scheme. It can do accounting
on received padding traffic and alert the user if relays in its circuits are sending
unscheduled padding.

Beginning of transmission. Control messages can also be used to signal the
beginning of the transmission. If we are in state S and a new page is requested,
we will need to flag the server to start padding. Otherwise, the transmission
from the first request to the following response is uncovered and reveals the size
of the index.html page.

i
i

i
i

i
i

i
i

ADAPTIVE PADDING 111

Soft stopping condition. In contrast to Tamaraw and CS-BuFLO, WTF-
PAD does not require an explicit mechanism to conceal the total time of the
transmission. At the end of the transmission, the padding is interrupted when
we hit the infinity bin in the gap state and then the infinity bin in the burst
state. See the Appendix A.1 for further discussion on how to set the tokens
in the infinity bins. The lack of a firm stop condition represents an advantage
over existing link-padding-based defenses, which require a mechanism to flag
the boundaries of the transmission. The probability of stopping will depend on
the shape of the histograms at the end of the transmission.

3.3 Inter-arrival time distributions

Shmatikov and Wang did not specify in the original AP paper how to build
and use the distribution of inter-arrival times in the AP histograms. In their
simulations, they sampled the inter-arrival times for both real and padding
traffic from the same distribution. To build the histograms, we have sampled the
times from a crawl of the top 35K pages in the Alexa list. First, we uniformly
selected a sample of approximately 4,000 pages and studied the distribution of
inter-arrival times within their traces.

10−6 10−5 10−4 10−3 10−2 10−1 0 10 102

Inter-arrival times in seconds (log scale)

P
a
ck
et

co
u
n
ts

0

1.5e6

2e6

Incoming
Outgoing

Figure 3: Inter-arrival time histogram in a large sample of the top 35K Alexa.

In order to implement WTF-PAD without revealing distinguishing features
between real and fake messages, we need to send dummies in time intervals
that follow the same distribution as real messages. In Figure 3, we observe
that times for incoming and outgoing traffic have different distributions. The
asymmetric bit rates in the connection we used to conduct the crawl account

i
i

i
i

i
i

i
i

112 TOWARD AN EFFICIENT WEBSITE FINGERPRINTING DEFENSE

for this difference. Since WTF-PAD has different histograms in the client and
the bridge we can simulate traffic that follows different distributions depending
on the direction.

Next, we explain how to find the bursts and the gaps in the inter-arrival time
distribution and build the histograms HB and HG. Intuitively, the burst-mode
histogram HB should consist of larger delays covering the duration of typical
bursts, while the gap-mode histogram HG should consist of smaller delays that
can be used to mimic a burst. To split inter-arrival times into the two histograms,
we calculate the instantaneous bandwidth at the time of each inter-arrival time
to determine if it is part of a burst or not. Then, we set a threshold on the
bandwidth to draw the line between bursts and gaps.

We estimate the instantaneous bandwidth using a sliding window over a sequence
of consecutive packets. We have experimented with different window lengths
and threshold values. The best results against the state-of-the-art WF attack
are achieved for a window of two consecutive packets and a threshold set to the
total average bandwidth for the whole sample of traces.

3.4 Tuning mechanism

AP can hide inter-arrival times that are longer than the average, but it does not
hide times that are shorter than the average. To effectively hide these times we
need to either add delays to exceptionally long traces or add more padding over
all traces to level them off and make them less distinctive. We focus on the
latter approach because our objective is to minimize delay. WTF-PAD provides
a mechanism to tune the trade-off between bandwidth overhead and security:
one can modify the parameters of the distributions used to build the histograms
to add more padding and react to shorter inter-arrival times.

To illustrate this, we show in Figure 4 the HB histogram as sampled from our
dataset. We observe that the distribution of the logarithm of these times can
be approximated with a normal distribution N (µ, σ2). That is, the inter-arrival
times follow a log-normal distribution. We can modify its mean and variance
to obtain another normal distribution N (µ′, σ′2) that we will use to sample
the inter-arrival times of HB. By using N (µ′, σ′2) we are shifting the average
distribution of inter-arrival times toward shorter values. This results in a greater
amount of short times being covered by padding, which increases the bandwidth
overhead but causes the pages become less distinguishable and thereby reduces
the attacker’s accuracy.

We created a statistical model of the underlying distributions of inter-arrival
times from the samples we extracted from our dataset. We experimented with

i
i

i
i

i
i

i
i

EVALUATION 113

Inter-arrival time in seconds (log scale)

D
en

si
ty

-8 -6 -4 -2 0 2

0
.0

0
.1

0
.2

0
.3

0
.4

µ− µ′

σ

σ′

Figure 4: Histogram of times between consecutive bursts for incoming traffic. In
dark gray we superpose the PDF of our log-normal fit. In light gray, we show the
PDF of a shifted log-normal distribution that we use to build the HB histogram.

multiple positively skewed distributions to build the model and test the goodness
of fit with the Kolmogorov-Smirnov test. We estimated the parameters of the
distributions using maximum likelihood estimation. Even though Pareto and
Beta distributions seemed to fit best, we decided for simplicity to use normal
and log-normal distributions, given that the error was not significantly greater
than that observed in the other distributions.

To calibrate the possible shifts, we set µ′ and σ′ according to the percentile of
the real data we want to include. For instance, assuming a normal distribution,
if we adjust µ′ to the 50th percentile, we obtain µ′ = µ and σ′ = σ. If we set µ′
to the value of the Probability Density Function (PDF) at the 10th percentile,
we then derive the σ′ using the formula of the PDF of the normal distribution.

4 Evaluation

In this section we discuss how we evaluated WTF-PAD, present our findings
and compare them with the results we obtained for existing defenses.

i
i

i
i

i
i

i
i

114 TOWARD AN EFFICIENT WEBSITE FINGERPRINTING DEFENSE

4.1 Data

Unlike most previous defense evaluations, which used simulated data, we have
used web traffic that has been collected over Tor. We used a dataset that had
been collected for a study about a realistic evaluation of WF attacks [10]. This
dataset consists of 40 instances, collected in ten batches of four visits, for each
homepage in top-100 Alexa sites [1]. For the open-world, the dataset also has
one instance for each website in the Alexa 35,000 most popular websites.

4.2 Methodology

To evaluate the improvements in performance offered by the defense, we applied
the attack’s classifier on both the original traffic traces and traces that have been
protected by applying the defense. The difference in bandwidth and latency
between the original and protected traces provides us with an estimate of the
overheads. We applied the state-of-the-art attack on the set of protected traces
to evaluate the effectiveness of the defense. The average accuracy over multiple
runs determines the security provided by the defense.

In the closed world, we measure the accuracy as the True Positive Rate (TPR), or
Recall. We also measure the False Positive Rate (FPR), the Positive Predictive
Value (PPV)—also called Precision, and the harmonic mean of precision and
recall (F1-Score), as they play an important role on evaluating the effectiveness
of the attack in the open-world.

The state-of-the-art attack is based on a k-NN model [22]. k-NN is a supervised
learning algorithm that selects the k closest instances (the neighbors), and
outputs the class of the majority of the neighbors. Wang et al. determined that
the number of neighbors that optimizes the trade-off between TPR and FPR is
k = 5. The distance defined by Wang et al. for use in k-NN is a weighted sum of
a set of features. This feature set is the most extensive in the WF literature with
more than 4,000 features and including features that extensively exploit bursts.

In order to have a comprehensive evaluation of WTF-PAD, we also evaluated
it with other existing WF attacks that take into account features that are not
included in k-NN.

i
i

i
i

i
i

i
i

EVALUATION 115

4.3 Results

To evaluate the trade-off between bandwidth overhead and accuracy provided by
WTF-PAD, we applied the attack on protected traces with different percentile
values, ranging from 0.5 (low protection) to 0.01 (high protection) percentiles.

In Figure 5, we show the trade-off curves for both normal and log-normal fits. We
observe a steeper decrease in accuracy for the normal model with respect to the
log-normal one. Remarkably, beyond a certain point (around 0.1 percentile), the
tuning mechanism saturates to 15% accuracy for both models: percentiles lower
than that point do not further reduce accuracy and only increase bandwidth
overhead. The trend we observe is the cost in bandwidth exponentially growing
with the protection level that the defense attempts to provide

1 1.5 2 2.5
0

0.5

1

Bandwidth overhead ratio

A
cc
u
ra
cy

Log-normal

Normal

Figure 5: Average accuracy versus median bandwidth overhead ratio.

Table 1 summarizes the security versus overhead trade-off obtained for different
attacks (i.e., k-NN, NB, SVM, DL) and defenses BuFLO, Tamaraw, CS-BuFLO
and WTF-PAD. As we see, WTF-PAD is the only defense to provide zero latency
overhead. The other defenses we tested produce between 145-200% additional
average delay to fetch a webpage. WTF-PAD also offers moderate bandwidth
overhead. For our datasets, we observed that the bandwidth overhead was
always below 60% while attaining decreases in the accuracy of the attack that
are comparable with the other defenses.

ROC curve. To study the impact of WTF-PAD on the performance of k-NN,
we also plotted the ROC curve with and without protection. The ROC curve
represents the performance of the classifier when its discrimination parameter
changes. The standard k-NN is not a parametric algorithm, meaning that there
is no explicit parameter that one can use to set the threshold and tune the
trade-off. We have defined more or less restrictive classifications of k-NN by

i
i

i
i

i
i

i
i

116 TOWARD AN EFFICIENT WEBSITE FINGERPRINTING DEFENSE

Table 1: Performance and security comparison among
link-padding defenses in a closed world.

Accuracy (%) Overhead (%)

Defense Parameters kNN Pa-SVM [16] DL-SVM [23] VNG++ [7] Latency Bandwidth

BuFLO [7] τ = 10s, ρ = 20ms, d = 1500B 14.9 14.1 18.75 N/A 145 348
CS-BuFLO [2] ρ = [20, 200]ms, d = 1500B, CPSP N/A 30.6 40.5 22.5 173 130
Tamaraw [22] ρout = 0.053, ρin = 0.138, d = 1500B 13.6 10.59 18.60 12.1 200 38

WTF-PAD Normal fit, p = 0.4, d = 1500B 17.25 15.33 23 26 0 77

setting a minimum number of votes required to classify a page. We used 10-fold
cross-validation to average the ROC curve for k = 5 neighbors in a closed world
of 100 pages. To plot the ROC graph we had to binarize the classification: we
divided the set of pages into two halves, 50 monitored and 50 non-monitored,
and considered the monitored as the positive class and the non-monitored as the
negative one. Then, all the positive (monitored) observations that are classified
as a page in the positive class are counted as true positives, even if the instances
were classified as a different monitored page. This is a more advantageous
scenario for a surveillance-type of attacker that only tries to identify whether
the page is monitored or not.

In Figure 6, we compare the ROC curves for the data before and after applying
the defense with respect to random guessing. We notice a significant reduction
in the performance of the classifier. Compared to unprotected data with an
AUC of 0.95 (close to perfect classification), WTF-PAD has an AUC of 0.66,
which is substantially closer to random guessing.

5 Realistic Scenarios

In this section, we present the results of the evaluation of the defense in two
realistic scenarios: the open world and the use of multi-tab browsing.

5.1 Open-world evaluation

We now evaluate the performance of the defense against the k-NN algorithm in
the open-world scenario. Our definition of the open-world is similar to the ones
described in prior work. We have evaluated the k-NN with the evaluation method
used by Wang et al. and incorporating the changes suggested by Wang [21], so
that we can compare our results with the ones they obtained [22]

i
i

i
i

i
i

i
i

REALISTIC SCENARIOS 117

1

1

0

FPR

T
P
R

Unprotected
(AUC≈ 0.95)

WTF-PAD
(AUC≈ 0.66)

Random
(AUC = 0.5)

Figure 6: 10-fold cross-validated ROC curves of k-NN with five neighbors and
using a strict consensus threshold.

In Wang’s open-world classification, they consider one class for each of the
monitored pages and one single class for all the non-monitored pages. Then,
the attacker aims to identify the exact monitored pages the user visits and
to classify all the visits to non-monitored pages into the non-monitored class
regardless of the actual page.

We observe that even though the accuracy initially increases as the world grows
and saturates to 95% at the maximum considered world size, the F1-Score
decreases and levels off to 50%. This is because even though the FPR rapidly
drops to zero, the TPR decreases below 40%. The accuracy is so high because
the classifier reaches almost perfect classification for the non-monitored class.
This high accuracy is due to the stringent threshold used in the k-NN which
requires all neighbors to vote to the same class and reduces the FPR.

We observe that the TPR and FPR after applying the defense are dramatically
lower than the rates shown in Figure 7. However, due to the skew between the
positive and the negative classes, the ROC curves of the k-NN are biased towards
the negative class and do not reflect well the performance of the classifier. For
imbalanced datasets, it is recommended to use the Precision-Recall ROC (P-
ROC) instead of the ROC [5]. Similarly to the standard ROC, P-ROC represents
the interaction of TPR (recall) and PPV (precision), instead of FPR, with respect
to variations on the discriminant of the classifier. Precision in the open-world
scenario conveys the fraction of monitored pages that were correctly detected by
the k-NN. Precision is invariant to the size of the negative class and thus gives
a more accurate estimation of the classifier’s performance in the open-world.

i
i

i
i

i
i

i
i

118 TOWARD AN EFFICIENT WEBSITE FINGERPRINTING DEFENSE

0K 5K 10K 15K
2 · 10−3

0.31

0.47

0.95

World size

F1-score Accuracy TPR FPR

0

1

R
a
te

Figure 7: Performance metrics for the classification of a k-NN classifier with
k = 4 neighbors for an open world up to 15K pages [21].

In the P-ROC graph, the perfect classifier has a curve that coincides with
the top-right corner and the random classifier is calculated as the number
of positives divided by the total number of instances, i.e., the probability of
selecting a positive instance uniformly at random. This random curve is used
as a baseline because no classifier can have lower precision than it. As in the
standard ROC, classifiers can be bench-marked by comparing their area under
the curve (AUC).

Figure 8: The figure on the left shows the P-ROC curves for the k-NN attack
on the protected and unprotected datasets for 5,000 pages. On the right, a
comparison of P-ROC AUC with respect to the world size.

i
i

i
i

i
i

i
i

REALISTIC SCENARIOS 119

Figure 8 (left) shows the P-ROC curve of the k-NN when applied on the set of
traces before and after WTF-PAD. Again, we observe that the AUC for the
unprotected case is reduced significantly (from 0.79 to 0.27) and is close to
random. However, this graph is a snapshot of the performance of the classifier
for a fixed world size (5,000 pages). In order to evaluate how the size of the world
affects the attack for the unprotected and protected data, we plot in Figure 8
(right) the AUC estimates while varying the size of the world. The first data
point represents a closed world where all pages are monitored and, as expected,
all classifiers perform as in perfect classification (AUC=1). However, as we
increase the size of the world, the baseline classification tends to zero because a
random guess is less likely to succeed. The k-NN levels off to AUC 0.74, which
means that it is not heavily affected by the size of the world. Notably, when we
apply the defense on the traces, all AUC values are close to random even for
the largest world size that we have considered (15K pages). WTF-PAD steadily
decreases the attack’s success at the same rate as the random classifier does.

5.2 Multi-tab evaluation

The objective of the experiments in this section is to evaluate the efficacy of the
WTF-PAD defense when the user is browsing with multiple tabs open. For this
evaluation, we considered two scenarios and in both, the goal of the attacker is
to identify one of the pages that compose the traffic trace.

Table 2: TPR for protected and unprotected traces in Scenarios 1 and 2.

TPR

Unprotected WTF-PAD

Scenario 1 14% 8%
Scenario 2 68% 22%

In Scenario 1, we trained the k-NN attack on a single-tab dataset and tested on
a mixed dataset of single tab traces and multi-tab traces generated by a crawl
with two simultaneous tabs. The first tab was loaded following the Alexa top 100
sequentially. The second tab was open with a delay from 0.5 to 5 seconds and
was chosen uniformly at random from the same list. Table 2 shows the result
of Scenario 1 for traces with and without the protection offered by WTF-PAD.

Since the accuracy of the k-NN is already low when training on single-tab
and testing on multi-tab (Scenario 1 in Table 2), the defense does not impact
significantly the TPR of the classifier.

i
i

i
i

i
i

i
i

120 TOWARD AN EFFICIENT WEBSITE FINGERPRINTING DEFENSE

Table 3: TPR with respect to each traffic type. Each cell shows the number of
background pages (first tab) detected among truly detected multi-tab traces.

Scenario 1 (TP/Total) Scenario 2 (TP/Total)

Single Multi First Single Multi First

Unprotected 233/300 901/8100 544/901 263/300 482/810 449/482

WTF-PAD 95/300 598/8100 333/598 108/300 137/810 103/137

In Scenario 2, we trained and tested k-NN on a dataset that includes multi-
tab and single-tab traces. In this scenario, the attack achieves 68% TPR on
unprotected multi-tab traces, much higher than the 14% found in Scenario 1.
However, the success rate on protected traces drops to 22%.

In Table 3 we group the detection rates by traffic type (single or multi tab) as
used to build the test set. k-NN can successfully classify unprotected single-tab
traces with an accuracy of 87%, which is close to the accuracy rate of k-NN in
the closed-world setting. The accuracy decreases to just 36% when we protect
the traces with WTF-PAD.

6 Discussion and future work

WF attacks fall within the Tor threat model [6], as it only requires one point
of observation between the client and the bridge or guard, and the attack
potentially de-anonymizes users by linking them with their browsing activity.
Even with the challenges of open-world and multi-tab browsing [10], some
websites may exhibit especially unique traffic patterns and be prone to high-
confidence attacks. Attacks may observe visits to the same site over multiple
sessions and gain confidence in a result.

Protecting Tor users from WF attacks, however, must be done while maintaining
the usability of Tor and limiting costs to Tor relay operators. Delay is already
an issue in Tor, so adding additional delay would harm usability significantly.
The BuFLO family of defenses add between 145-200% additional delay to the
average website download, i.e. up to three times as long to get a webpage, which
makes them very unlikely to be adopted in Tor.

The main overhead in WTF-PAD is bandwidth, which was under 80% overhead
in all scenarios we tested. We do not know the exact percentage that is
acceptable for use in Tor, but we note the following points. First, approximately
40% of Tor traffic is bulk downloads (from 2008, the last data we know of) [13].

i
i

i
i

i
i

i
i

CONCLUSION 121

To the extent that this holds today, only the remaining 60% of traffic needs to be
covered by this defense. Second, the bottleneck in Tor bandwidth today is exit
nodes. WF defenses do not need to extend to exit nodes, stopping at the bridge
(in our framework) or at the guard or middle node when fully implemented.
Thus, the bandwidth overhead only extends to one or two relays in a circuit
and crucially not to the most loaded relay, making the overhead cost much less
in practice. Third, given our findings for the open-world setting, it may be
possible to tune WTF-PAD further to lower the bandwidth and maintain useful
security gains in realistic use cases.

The construction of the histograms HB and HG is critical for the correct
performance of the defense. First, since these distributions depend on the
client’s connection, we cannot estimate them a priori and ship them with WTF-
PAD. A solution is to consider groups of clients with similar connections and
have a precomputed configuration for each group. Then, the clients will estimate
the properties of their network and only download the configuration that best
matches their connection. Future work in developing WTF-PAD could explore
the use of genetic algorithms to find the optimal histogram for each specific
situation. A genetic algorithm could optimize a fitness function composed
by the bandwidth overhead and the accuracy of the WF attack. Under mild
assumptions on the distribution, histograms can be represented efficiently to
reduce the search space.

7 Conclusion

In this paper, we described the design of WTF-PAD, a probabilistic link-padding
defense based on Adaptive Padding. We studied the effectiveness and overheads
of WTF-PAD, and compared it to existing link-padding-based defenses, showing
that it offers reasonable protection with lower overhead costs. In particular, our
results show that WTF-PAD does not introduce any delay in the communication
while introducing moderate bandwidth overheads, which makes it especially
suitable for low-latency communications such as Tor. Additionally, we have
evaluated the effectiveness of WTF-AP in open-world and multi-tab scenarios.
The results show that the defense reduces the performance of the classifier to
random guessing.

References

[1] Alexa. Alexa Top 500 Global Site. http://www.alexa.com/topsites, 2015.

http://www.alexa.com/topsites

i
i

i
i

i
i

i
i

122 TOWARD AN EFFICIENT WEBSITE FINGERPRINTING DEFENSE

[2] Xiang Cai, Rishab Nithyanand, and Rob Johnson. Glove: A bespoke website
fingerprinting defense. In ACM Workshop on Privacy in the Electronic
Society (WPES), pages 131–134. ACM, 2014.

[3] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg.
A systematic approach to developing and evaluating website fingerprinting
defenses. In ACM Conference on Computer and Communications Security
(CCS), pages 227–238. ACM, 2014.

[4] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching
from a distance: Website fingerprinting attacks and defenses. In ACM
Conference on Computer and Communications Security (CCS), pages 605–
616. ACM, 2012.

[5] Jesse Davis and Mark Goadrich. The relationship between precision-recall
and roc curves. In Proceedings of the 23rd international conference on
Machine learning, pages 233–240. ACM, 2006.

[6] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security
Symposium, pages 303–320. USENIX Security Symposium, 2004.

[7] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton.
Peek-a-Boo, I still see you: Why efficient traffic analysis countermeasures
fail. In IEEE Symposium on Security and Privacy (S&P), pages 332–346.
IEEE, 2012.

[8] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website
fingerprinting: attacking popular privacy enhancing technologies with the
multinomial Naïve-Bayes classifier. In ACM Workshop on Cloud Computing
Security, pages 31–42. ACM, 2009.

[9] Andrew Hintz. Fingerprinting websites using traffic analysis. In Privacy
Enhancing Technologies Symposium (PETS), pages 171–178. Springer,
2003.

[10] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel
Greenstadt. A critical evaluation of website fingerprinting attacks. In
ACM Conference on Computer and Communications Security (CCS), pages
263–274. ACM, 2014.

[11] Liming Lu, EC Chang, and MC Chan. Website fingerprinting and
identification using ordered feature sequences. In European Symposium
on Research in Computer Security (ESORICS), pages 199–214. Springer,
2010.

i
i

i
i

i
i

i
i

REFERENCES 123

[12] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky K. C.
Chang, and Roberto Perdisci. HTTPOS: Sealing information leaks with
browser-side obfuscation of encrypted flows. In Network & Distributed
System Security Symposium (NDSS). IEEE Computer Society, 2011.

[13] Damon McCoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and
Douglas Sicker. Shining light in dark places: Understanding the Tor
network. In Privacy Enhancing Technologies Symposium (PETS), July
2008.

[14] Brad Miller, Ling Huang, Anthony D Joseph, and J Doug Tygar. I know
why you went to the clinic: Risks and realization of https traffic analysis.
In Privacy Enhancing Technologies Symposium (PETS), pages 143–163.
Springer, 2014.

[15] Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan
Pennekamp, Klaus Wehrle, and Thomas Engel. Website fingerprinting
at internet scale. In Network & Distributed System Security Symposium
(NDSS), pages 1–15. IEEE Computer Society, 2016.

[16] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.
Website fingerprinting in onion routing based anonymization networks.
In ACM Workshop on Privacy in the Electronic Society (WPES), pages
103–114. ACM, 2011.

[17] Vitaly Shmatikov and Ming-Hsiu Wang. Timing analysis in low-latency
mix networks: Attacks and defenses. European Symposium on Research in
Computer Security (ESORICS), 2006.

[18] Qixiang Sun, Daniel R Simon, Yi-Min Wang, Wilf Russel, Venkata N.
Padmanabhan, and Lili Qiu. Statistical identification of encrypted web
browsing traffic. In IEEE Symposium on Security and Privacy (S&P),
pages 19–30. IEEE, 2002.

[19] The Tor project. Users statistics. https://metrics.torproject.org/
users.html. (accessed: July 20, 2015).

[20] The Tor project. Pluggable Transports. Tor spec: "https://
gitweb.torproject.org/torspec.git/tree/pt-spec.txt", 2012. (ac-
cessed: December 15, 2015).

[21] Tao Wang. Website Fingerprinting: Attacks and Defenses. PhD thesis,
University of Waterloo, 2016.

[22] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg.
Effective attacks and provable defenses for website fingerprinting. In
USENIX Security Symposium, pages 143–157. USENIX Association, 2014.

https://metrics.torproject.org/users.html
https://metrics.torproject.org/users.html
https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt
https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt

i
i

i
i

i
i

i
i

124 TOWARD AN EFFICIENT WEBSITE FINGERPRINTING DEFENSE

[23] Tao Wang and Ian Goldberg. Improved Website Fingerprinting on Tor.
In ACM Workshop on Privacy in the Electronic Society (WPES), pages
201–212. ACM, 2013.

[24] CV V Wright, F Monrose, and GM M Masson. On inferring application
protocol behaviors in encrypted network traffic. 7(2006):2745–2769, 2006.

A Appendices

A.1 WTF-PAD Histograms

A histogram is defined as a disjoint partition of the support of the inter-arrival
time distribution [0,+∞). Each sub-interval, that we call bin, is a half-closed
interval Ii = [ai, bi) with 0 ≤ ai, bi ≤ +∞ for all i = 1, . . . , n, where n ≥ 2
is the total number of bins in the partition. The bin lengths used in the AP
histogram increase exponentially with the bin index, namely, the intermediate
bins have the following endpoints:

ai = M

2n−i , bi = M

2n−i−1 ,

for i = 2, . . . , n − 1. M > 0 is the maximum inter-arrival time considered in
practice. The first bin is I1 = [0, M

2n−2) and the last bin is In = [M,+∞).

An exponential scale for the bins provides more resolution for values in a
neighborhood of zero, which is convenient to represent distributions with heavy
positive skew, such as the distribution of inter-arrival times in network traffic.

When we sample from a bin, AP returns a value sampled uniformly from [ai, bi),
except for the last bin [M,+∞), in which case AP returns “∞”.

In Figure 9, we show a simplified version of the histograms we used in the
WTF-PAD instance at the client. The histograms that we use have 20 bins.

Each bin contains a number of tokens ki. We denote K the sum of tokens in all
the bins except the infinity bin, i.e.:

K :=
n−1∑
i=1

ki.

i
i

i
i

i
i

i
i

APPENDICES 125

Figure 9: Example of WTF-PAD histograms at the client. The histogram on
the top is the HB and the one at the bottom is HG.

If we assume the probability of selecting a token is uniform over the total
number of tokens, then the probability of sampling a delay from that bin can
be estimated as:

Pi := ki
K + kn

. (1)

We assume that all the bins Ii for i < n are already filled as explained in Section
3.3. In the following we describe how to set the number of tokens in In, the
infinity bin, for both histograms, HB and HG.

Infinity bin in HB. According to the notation introduced above, Pn in HB

is the probability of falling into the infinity bin and thus defines the probability
of not sending padding (and not starting a fake burst) when we draw a sample
from it. To express kn in terms of the probability of sampling from In and the
current sum of tokens in the histogram, we clear Equation 1 for kn:

kn = Pn
1− Pn

K.

For instance, if we decide on setting the probability of generating a fake burst
to 0.9, then we need to set Pn = 0.1. Assuming K = 300 tokens, using the
equation above we obtain kn ≈ 34.

Infinity bin in HG. The number of tokens we will sample from HG until we
hit the infinity bin is the number of dummy messages we will send within a fake
burst. Since the probability of drawing a token is uniform, we can think the
histogram as one single bucket that contains tokens from In and tokens from
the other bins. Then, the expected number of draws without replacement, L,

i
i

i
i

i
i

i
i

126 TOWARD AN EFFICIENT WEBSITE FINGERPRINTING DEFENSE

until we draw the first token from the infinity bin is a known result one can
find in any probability textbook:

E[L] = K + kn + 1
kn + 1 .

We know the expected value of the length of a burst from our estimations on a
large dataset of web traffic. Let µL be the mean burst length. In order to make
sure fake bursts have the same mean length as real bursts, we must impose
the expected number of tokens we sample until we hit the infinity bin to be:
E[L] = µL. Then, we only need to clear kn from the equation:

kn = K − µL + 1
µL − 1 .

This equation is well defined because, typically, the mean length of a burst is
small: K >> µL.

i
i

i
i

i
i

i
i

Publication

Website Fingerprinting
Defenses at the Application
Layer

Publication Data

Cherubin, G., Hayes, J., and Juarez, M. "Website fingerprint-
ing defenses at the application layer". In Proceedings on Privacy
Enhancing Technologies (PoETS) (2017), De Gruyter, pp. 168–185

Contributions

• Principal author. All authors contributed equally.

127

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Website Fingerprinting Defenses at the Application
Layer

Giovanni Cherubin1, Jamie Hayes2, and Marc Juarez3

1 Royal Holloway University of London, Egham, UK
2 University College London, London, UK

3 KU Leuven, ESAT/COSIC and imec, Leuven, Belgium

Abstract. Website Fingerprinting (WF) allows a passive network
adversary to learn the websites that a client visits by analyzing
traffic patterns that are unique to each website. It has been recently
shown that these attacks are particularly effective against .onion
sites, anonymous web servers hosted within the Tor network. Given
the sensitive nature of the content of these services, the implications
of WF on the Tor network are alarming. Prior work has only
considered defenses at the client-side arguing that web servers
lack of incentives to adopt countermeasures. Furthermore, most
of these defenses have been designed to operate on the stream of
network packets, making practical deployment difficult. In this
paper, we propose two application-level defenses including the first
server-side defense against WF, as .onion services have incentives
to support it. The other defense is a lightweight client-side defense
implemented as a browser add-on, improving ease of deployment
over previous approaches. In our evaluations, the server-side
defense is able to reduce WF accuracy on Tor .onion sites from
69.6% to 10% and the client-side defense reduces accuracy from
64% to 31.5%.

1 Introduction

Website Fingerprinting (WF) attacks allow a passive local adversary to infer
which webpage a client is viewing by identifying patterns in network traffic
that are unique to the webpage. These attacks are possible even if the client
is browsing through anonymity networks such as Tor and the communication
is encrypted [12]. Tor routes a client’s traffic through volunteer relays before
connecting to the communication’s destination, so that local eavesdroppers
cannot link both sender and receiver of the communication [8]. However, the

129

i
i

i
i

i
i

i
i

130 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

WF attack, if successful, breaks the unlinkability property that Tor aims to
provide to its users.

Moreover, a 2015 study has shown that .onion sites can be distinguished from
regular sites with more than 90% accuracy [16]. This substantially narrows
down the classification space in Tor and suggests the attack is potentially more
effective at identifying .onion sites than regular pages. Onion services are
websites with the .onion domain hosted over Tor, allowing a client to visit a
website without requiring it to publicly announce its IP address. These sites
tend to host sensitive content and may be more interesting for an adversary,
turning the WF attack into a major threat for connecting users. In this paper,
we propose the first set of defenses specifically designed and evaluated for Tor
.onion sites.

WF defenses are often theorized at the network level, and try to disrupt statistical
patterns via inserting dummy messages in to the packet stream [3,4, 9]. Some
defenses try to alter the network traffic of a webpage to mimic that of another
webpage that is not interesting to the attacker [31]. However, a defense at the
network level may require substantial changes of Tor or even the TCP stack,
which would make its deployment unrealistic. Furthermore, there is no need to
hide patterns at the network layer because few webpage-identifying features, if
any, are introduced by low layers of the stack (e.g., TCP, IP). In this work, we
consider application-layer defenses, arguing that this approach is more natural
for WF defenses and facilitates their development.

Existing WF defenses have been engineered to protect the link between the
client and the entry to the Tor network, assuming this is the only part of the
network observable by the adversary. We propose both WF defenses at the
client- and server-side. A server-side defense is more usable as it does not require
any action from the user. More and more, certain types of websites, such as
human rights advocacy websites, have the motivation to provide WF defenses
as a service to its user base, who may be of particular interest to an adversary.
For this reason, we believe that, in contrast to normal websites, .onion site
operators not only have the incentive to provide defenses against WF attacks,
but can also achieve a competitive advantage with respect to other .onion sites
by doing so.

As a real life motivating example, we were contacted by SecureDrop [1], an
organization that provides onion services for the anonymous communication
between journalists and whistleblowers. They are concerned that sources wishing
to use their service can be de-anonymized through WF. As a consequence, they
are interested in using a server-side WF defense. We have included a SecureDrop
website in all the datasets used for the evaluation of defenses.

i
i

i
i

i
i

i
i

THREAT MODEL 131

We introduce two variants of a server-side defense operating at the application
layer, which we call Application Layer Padding Concerns Adversaries (ALPaCA).
We evaluate it via a live implementation on the Tor network. We first crawl
over a significant fraction of the total Tor .onion site space, retrieving not
only the network level traffic information – as is standard in WF research –
but also the index.html page and HTTP requests and responses. We then
analyze the size distribution for each content type, e.g. PNG, HTML, CSS.
Using this information, ALPaCA alters the index.html of a page to conform
to an “average” .onion site page. ALPaCA runs periodically, changing the
page fingerprint on every user request.

Due to the expected slow adoption of server-side WF defenses, client-side
defenses must still be used. We therefore implement a simple client-side WF
defense, dubbed Lightweight application-Layer Masquerading Add-on (LLaMA),
that works at the application layer by adding extra delays to the HTTP requests.
These delays alter the order of the requests in a similar way to randomized
pipelining (RP) [23], a WF countermeasure implemented in the Tor browser
that has been shown to fail in several evaluations [5,14,30]. Besides delaying
HTTP requests, our defense sends redundant requests to the server. We show
most of the protection provided by this defense stems from the extra requests
and not from the randomization of legitimate requests.

Our contributions are, as a result of a real life demand, the first implementation
of a server-side WF defense and a simple yet effective lightweight client-side
defense. With these two approaches we explore the space of application-layer
defenses specifically designed to counter WF in .onion sites. In addition, we
have collected the largest – to the best of our knowledge – dataset of sizes
and types of content hosted by Tor .onion sites. We provide an evaluation of
the overhead and efficacy of our defenses and compare it to some of the most
practicable existing WF defenses.

The source code and datasets of both ALPaCA and LLaMA have been made
publicly available on GitHub4. The original code is also available on an .onion
site5, which is protected using our defense.

2 Threat model

As depicted in Figure 1, we consider an adversary who has access to the
communication between the client and the entry point to the Tor network, known
as entry guard. A wide range of actors could have access to such communications,

4http://github.com/camelids/
5http://3tmaadslguc72xc2.onion

http://github.com/camelids/
http://3tmaadslguc72xc2.onion

i
i

i
i

i
i

i
i

132 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

ranging from malicious or corrupted relay operators, who can target all clients
connecting to the guards they control; to ASes, ISPs and local network admin-
istrators, who can eavesdrop on Tor clients located within their infrastructure.

−

Guard

Tor network

Client
x.onion

y.onion

z.onion

Adversary

Figure 1: A client visits an .onion site over Tor. The attacker eavesdrops the
encrypted link between the Tor client and the entry guard to the Tor network.
Between the client and the destination onion service there is a six-hop Tor
circuit that we have omitted to simplify the figure.

The adversary eavesdrops the communication to obtain a trace or sample
instance of the encrypted network packets. He can observe and record these
packets, but he cannot decrypt them. Furthermore, we will assume a passive
adversary: he cannot remove or modify the packets, nor drop or add new packets
to the stream.

The objective of the adversary is to infer the websites that were visited by
the client from the traffic samples. The adversary can build a template for a
number of websites with his own visits and then match the traffic generated by
the client. It has been shown that, for a small set of websites, such an attacker
can achieve high success rates achieving over 90% accuracy [5].

These attacks have however been criticized for making a number of unrealistic
assumptions that favor the adversary [14]. For instance, they assume webpages
are static, although some pages have frequent content updates; the client
only visits pages that the attacker has trained on, also known as the closed-
world assumption; and the attacker is able to perfectly parse the fraction of the
continuous stream of traffic corresponding to a specific page download, assuming
there is a gap between one visit and the next one.

In 2015, Kwon et al. showed that an attacker falling within this threat model
can effectively distinguish visits to .onion sites from regular websites [16].
They also revisited the assumptions for which prior work on WF had been
criticized [14] and found that many of these assumptions hold when considering
only .onion sites. In contrast to the open Web, the world of .onion sites is
small and comparable to a closed world, they are also more static than regular
websites and their streams are isolated by domain [16]. As in virtually all prior

i
i

i
i

i
i

i
i

RELATED WORK 133

work on WF, they still assumed the client visits only home pages, ignoring other
pages in the website such as inner pages and logged-in or personalized pages
that are not available to the attacker. In our evaluation, we follow them and
only collect data for the home page of the .onion sites we have crawled.

We assume an adversary is only interested in fingerprinting .onion sites, and
already has a classifier to tell .onion traffic apart from the bulk of client traffic.
We focus on defenses that protect against the WF attack in the “onion world”
because it is a more threatening setting than the one studied in most prior WF
work on Tor; visits to .onion sites tend to be more sensitive than to pages
whose IP address is visible to clients. Luo et al. argue that a WF defense must
be implemented at the client-side because web servers have no incentive to offer
such a service [19]. However, we believe .onion site operators are aware of the
privacy concerns that Tor clients have and would make the necessary (minor)
modifications in the server to implement our defense.

For the design of ALPaCA, we will assume there is no dynamic content. This
includes content generated at the client-side (e.g., AJAX) as well as the server-
side (e.g., a PHP script polling a database). This assumption simplifies the
design of the server-side defense: ALPaCA requires the size of the web resources
being loaded and it is hard to estimate the size of dynamic content a priori.

To assume that no JavaScript will run in the browser is not as unrealistic as it
may seem given the high prevalence of JavaScript in the modern Web. The Tor
Browser’s security slider allows users to select different levels of security, disabling
partially or totally JavaScript. Furthermore, SecureDrop pages already ask
their clients to disable JavaScript to prevent attacks such as cross-site scripting.
It is reasonable to think that clients who protect themselves against WF will
first disable JavaScript to prevent these other attacks.

3 Related work

WF is typically modeled as a supervised learning problem. The attacker collects
traffic traces for a large sample of websites that aims to identify and builds
a classifier that outputs a label, with a certain level of confidence. Since the
first WF classifiers were proposed in the late nineties [7], the attacks have been
developed with improved classification models to defeat a wide variety of privacy
enhancing technologies such as encrypting web proxies [13,27], SSH tunnels [17],
VPNs, and even anonymity systems such as Tor and JAP [12].

i
i

i
i

i
i

i
i

134 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

3.1 Attacks

The latest attacks against Tor achieve more than 90% accuracy in a closed-world
of websites, where the attacker is assumed to have samples for all the websites
a target user may visit [5, 11, 20, 29, 30]. This assumption is unrealistically
advantageous for the attacker [14] and a recent study has shown that the
attack does not scale to large open-worlds [20]. However, the .onion space is
significantly smaller than the Web and may be feasible for an adversary to train
on a substantial fraction of all .onion websites. Furthermore, the closed-world
evaluation provides a lower bound for the efficacy of the defense. For a complete
evaluation of the performance of our defenses, in this paper we will provide
results for both open and closed-world scenarios.

We have selected the most relevant attacks in the literature to evaluate our
defenses:

k-NN [29]: Wang et al. proposed a feature set of more than 3,000 traffic
features and defined an adaptive distance that gives more weight to those
features that provide more information. To classify a new instance, the attack
takes the label of the k Nearest Neighbors (k-NN) and only makes a guess if all
the neighbors agree, minimizing the number of false positives.

CUMUL [20]: The features of this attack are based on the cumulative sums
of packet sizes. The authors interpolated a fixed number of points from this
cumulative sum to build the feature vectors that they use to feed a Support
Vector Machine (SVM).

k-FP [11]: Hayes and Danezis used Random Forests (RF) to transform, based
on the leafs of the trees, an initial feature set to another feature set that encodes
the similarity of an instance with respect to its neighbors. Then, they also used
a k-NN for final classification.

3.2 Defenses

Most WF defenses in the literature are based on link-padding. The traffic
morphing approach attempts to transform the traffic of a page to resemble
that of another page [18,21,31], or to generalize groups of traffic traces in to
anonymity sets [4, 29]. The main downside of this type of defenses is that they
require a large database of traffic traces that would be costly to maintain [14].

Link-padding aims to conceal patterns in web traffic by adding varying amounts
of dummy messages and delays in flows. Link-padding has been used for traffic

i
i

i
i

i
i

i
i

RELATED WORK 135

morphing to cause confusion in the classifier by disguising the target page
fingerprint as that of another page [31]. However, as Dyer et al. note [9], traffic
morphing techniques produce high bandwidth overheads as some packets must
be buffered for a long period. The strategy we follow in ALPaCA is different
from traffic morphing in that page contents are not disguised as other pages’,
but rather the content is modified to become less fingerprintable. The intuition
behind ALPaCA is to make each resource look like an “average” resource,
according to the distribution of resources in the world of pages. This approach
reduces the overheads with respect to morphing, as resizing an object to an
average size will tend to require less amount of padding than to an object of
a specific page. We have experimented with morphing the contents in a page
to make it look like another page. This can be seen as the application-level
counterpart of traffic morphing and the results can be found in subsection A.1.

In 2012, Dyer et al. presented BuFLO [9], a defense based on constant-rate
link-padding. Although BuFLO is a proof-of-concept defense and has high
bandwidth overheads, other defenses have been developed from the original
BuFLO design. Tamaraw [3] and CS-BuFLO [4] optimize BuFLO’s bandwidth
and latency overheads to make its deployment feasible. Both of these defenses
address the issue of padding the page’s tail. BuFLO padded all pages up to a
certain maximum number of bytes producing the high bandwidth overheads.
CS-BuFLO and Tamaraw proposed a strategy to pad pages to multiples of a
certain parameter, which groups pages in anonymity sets by size and significantly
reduces the bandwidth overhead over BuFLO. We follow a similar strategy for
one of the modes of ALPaCA.

Recently, a lightweight defense based on Adaptive Padding has also been
proposed to counter WF [15]. In order to offer low latency overheads, this
defense only pads time gaps in traffic that are statistically unlikely to happen.
To empirically determine the likelihood of a gap they sampled a large number
of pages over Tor and built a distribution of inter-arrival times used to sample
the delays for the dummy messages.

Our main concern with these designs is that padding is applied at the network
layer. There is no need to apply the defense at the network layer because layers
below HTTP do not carry identifying information about the webpage. One
could argue that latency and bandwidth identify the web server. However, these
features vary depending on network conditions and are shared by all pages hosted
in the same server or behind the same CDN. Moreover, the implementation of
such defenses may require modifications in the Tor protocol and even the TCP
stack, as they generate Tor cells that are sent over Tor’s TLS connections.

Application layer defenses act directly on the objects that are fingerprinted at
the network layer. The padding is also added directly to these objects. As

i
i

i
i

i
i

i
i

136 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

opposed to network-layer defenses that must model legitimate traffic to generate
padding, application-layer defenses inject the padding inside the encrypted
payload and is, consequently, already indistinguishable from legitimate traffic at
the network layer. In addition, defenses at the application layer do not require
modifications in the source code of the Tor protocol, which make them more
suitable for deployment.

In this paper we present and explore two novel approaches for application layer
defenses at both client and server-side. In the rest of this section we describe
the state of the art on application-layer defenses.

Server-side

To the best of our knowledge, there is only a prototype of a server-side defense
that was drafted by Chen et al. and it was designed for a slightly different
although related problem [6]. They studied WF in the context of SSL web
applications, where the attacker is not trying to fingerprint websites, but specific
pages within one single website. Their main contribution was to show that a
local passive adversary can identify fine-grained user interactions within the
website. The authors devise a defense that requires modifications at both client
and server sides, which allows padding to be added to individual HTTP requests
and responses.

Client-side

There are only two application-layer defenses proposed in the WF literature:
HTTPOS [19] and Randomized Pipelining (RP) [23]. Luo et al. proposed
HTTPOS as a client-side defense arguing that server-side or hybrid defenses
would see little adoption in the wild due to lack of incentives [19]. In that study,
the authors pinpoint a number of high-level techniques that alter the traffic
features exploited by WF attacks. For instance, they modify the HTTP headers
and inject fake HTTP requests to modify the length of web object sizes.

RP is the only WF countermeasure that is currently implemented in the Tor
browser. It operates by batching together a single clients requests in the HTTP
pipeline to randomize their order before being sent to the server. Several studies
have applied WF attacks on data collected with a RP-enabled Tor Browser and
all of them have shown that the defense was not effective at decreasing the
accuracy of the WF attack in the closed world [5, 14,30]. The reason why RP
does not work is not clear and has not been investigated in these evaluations.

i
i

i
i

i
i

i
i

DEFENSES 137

4 Defenses

WF attacks are possible because different webpages serve different content. High
level features such as the number of requests the browser makes to download a
page, the order of these requests and the size of each response, induce distinctive
low level features observed in the network traffic [9, 21]. For instance, the
number of requests sent by the browser corresponds to the number of objects
embedded in the page such as images, scripts, stylesheets, and so on.

Most existing defenses propose to add spurious network packets to the stream to
hide these low-level features [3,4,9], However, effectively concealing these features
at network level poses technical challenges, as the operation of underlying
protocols, i.e. TLS, TCP, IP, obfuscates the relation between low and high
level features. For this reason, we believe adding the padding to the actual
contents of the page is a more natural strategy to hide traffic features than
sending dummy packets: if the defense successfully conceals high-level features,
the low-level features will follow.

In this section, we describe in detail the strategies that we propose at the
application layer at both server (ALPaCA) and client side (LLaMA) to mitigate
WF attacks.

4.1 ALPaCA

ALPaCA is a server-side defense that pads the contents of a webpage and
creates new content with the objective of concealing distinctive features at the
network level. We demonstrate that this strategy is not only effective, but also
practical to deploy. We have implemented and evaluated ALPaCA as a script
that periodically runs on a server hosting an .onion site.

We first show that it is possible to pad the most popular types of webpage
objects (e.g., images, HTML) to a desired size, without altering how they look
to a user. We then propose two variants of server-side defenses, referred to
as P-ALPaCA and D-ALPaCA. At a high level, the defenses choose, for a
page to morph, a suitable list of sizes T , that we call target. A target specifies
the number and size of the objects of the morphed page; P-ALPaCA and
D-ALPaCA differ in how they select such a target. Then, the objects of the
original page are padded to match the sizes defined in T . If T contains more
elements than the page’s objects, then new objects (“padding objects”) are
created and referenced from the morphed HTML page (Algorithm 2). Figure 2
gives a high level overview of this process.

i
i

i
i

i
i

i
i

138 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

Padding an object to a target size

This section describes how we can pad most types of objects. It is important to
note that an adversary looking at encrypted packets cannot: i) distinguish the
type of objects that are being downloaded, ii) infer how much padding was added
to such objects or whether they were padded at all. By padding an object directly
on the server, we can control how large it will look like at the network level. While
this control is not complete (because of compression in the HTTP protocol),
experiments show that this discrepancy does not largely affect on our defenses.

Table 1 shows the types of objects that we can pad up to a desired size, and
their frequency within the .onion site world. To pad text objects (e.g., HTML
and CCS) we can add the desired amount of random data into a comment. To
pad binary objects (e.g., images), it is normally sufficient to append random
data to the end of the file; in fact, the file structure allows programs to recognize
the end of the file even after this operation.

We verified that binary files would not be corrupted after appending random
bytes to them as follows. We used ImageMagick’s identify program6 for
verifying the validity of PNG, ICO, JPEG, GIF, and BMP files after morphing.
The program only raised a warning “length and filesize do not match” for
the BMP file; the image was, nevertheless, unaffected, as it could be opened
without any errors. We used mp3val7 to check MP3 files; the program returned
a warning “Garbage at the end of the file”, but the file was not corrupted, and
it could be played. We used ffmpeg8 to verify AVI files; the program did not
return any errors or warnings.

It is thus possible to morph the most common object types. We suspect that
many other types of object can be morphed analogously, by appending random
bytes or by inserting data in comments or unused sections of the type structure.
We remark, however, that in experiments we did not remove content we could
not morph from webpages.

Morphing a page to a target T

We introduce Algorithm 2, which morphs the contents of a page to match the
sizes defined by a target T . The target is selected differently by the two versions
of ALPaCA, as presented later, and it defines the size of the objects that the
morphed page should have.

6http://www.imagemagick.org/
7http://mp3val.sourceforge.net/
8https://ffmpeg.org/

http://www.imagemagick.org/
http://mp3val.sourceforge.net/
https://ffmpeg.org/

i
i

i
i

i
i

i
i

DEFENSES 139

Table 1: Padding the most frequent objects in .onion sites to a desired size.
“N.O.” stands for “not observed”. We assume JavaScript is disabled, although it
is possible to morph JS files as shown.

Content
type

Morphing Frequency

PNG, ICO,
JPG, GIF,
BMP

Append random bytes to
the file.

51%

HTML Insert random data within
a comment “<!–”, “–>”.

13%

CSS Insert random data within
a comment “/*” “*/”.

12%

JS Insert random data within
a comment “/*” “*/”.

13%

MP3 Append random bytes to
the file.

N.O.

AVI Append random bytes to
the file.

N.O.

The algorithm keeps two lists: M , containing the morphed objects, and P ,
which keeps track of the sizes in T that have not been used for moprhing an
object; both lists M and P are initially empty. The algorithm sequentially
considers the objects of the original page from the smallest to the largest; for
object o, it seeks the smallest size t ∈ T which o can be padded (i.e., for which
size(o) ≤ t). Once it has found such a t, it removes all the elements of T smaller
than t, and pads o to size t; the elements removed from T at this stage (except
t) are put into P . After all the original objects have been morphed, the sizes
remaining in T are appended to P . New “padding objects” (objects containing
random bytes) are generated according to the sizes in P . We make sure that
padding objects will be downloaded by a browser, but will not be shown, by
inserting a reference to them in the HTML page as if they were hidden images9.
Finally, the HTML page itself is padded to a target size by the defense.

P-ALPaCA

P-ALPaCA (Probabilistic-ALPaCA) generates a target by randomly sampling
from a distribution that represents real-world .onion sites. Specifically, it has
access to three probability distributions Dn, Dh and Ds, defined respectively
on the number of objects a page has, the size of the HTML page and the size of

9To add an invisible object called “rnd.png” to an HTML page we insert ’. The browser will consider this a PNG file
and it will download it, but it will not attempt to show it. The file, thus, needs not to respect
the PNG format, and it can just contain random bytes.

i
i

i
i

i
i

i
i

140 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

Algorithm 2 Pad a list of objects to a target
Input: O: list of original objects
T : list of target sizes

Output: M : list of morphed objects

M ← []
P ← []
. Morph the original objects.
while |M | < |O| do

o← arg min
{

o ∈ O}{size(o)}

. Remove the target sizes smaller than size(o).
while min(T) < size(o) do

Remove min(T) from T
Append min(T) to P

end while
if T is empty then

. Cannot morph O to T
fail

end if
. Note: the current min(T) is larger than size(o)
t← min(T)
m← o padded to size t
Append m to M

end while
. Add padding objects.
Merge P and T into P
for p in P do

m← New padding object of size p
Append m to M

end for

each of its objects. The defense samples a target T using these distributions,
and then morphs the original page as shown in Algorithm 2.

We estimated Dn, Dh and Ds using Kernel Density Estimation (KDE) from
5, 295 unique .onion websites we crawled. Details about crawling and analysis
of these websites are in section 5. In section B we show the resulting distributions
Dn, Dh and Ds, and provide details on how we used KDE to estimate them.

The defense first samples the number of objects n for the morphed page according
to Dn. Then, it samples the size of the morphed HTML from Dh, and n sizes
from Ds which constitute a target T . Finally, it attempts to morph the original

i
i

i
i

i
i

i
i

DEFENSES 141

page to T (Algorithm 2); if morphing fails, the procedure is repeated. The
algorithm is shown in Algorithm 3.

Because sampling from the distributions can (with low probability) produce very
large targets T , we introduced a parameter max_bandwidth to P-ALPaCA.
Before morphing, the defense checks that the total page size is smaller than
or equal to this parameter:

∑
t∈T t ≤ max_bandwidth. If not, the sampling

procedure is repeated.

A simple alternative to sampling from a distribution that represents the present
state of the .onion world, is to sample the number and size of padding objects
uniformly at random. We expect that this alternative approach would also set
a maximum bandwidth parameter, which would serve as the upper bound of
the size of the morphed page. One could imagine that a naive implementation
of this alternative approach which sets a high maximum would cause extremely
high bandwidth overheads. However, reducing this maximum parameter would
constrain the morphed page to look like a small subsection of the onion world,
removing altogether the possibility that the page is morphed to resemble a large
.onion site. Our approach allows a large maximum bandwidth parameter to
bet set while ensuring bandwidth overheads will be low. With our approach,
the probability that a small page, say A.onion, is morphed to the size of a
large .onion site, say B.onion, directly corresponds to the ratio of the number
of .onion sites within the .onion world that are of an equal size to B.onion.
Meaning a small .onion site can have the entire .onion world as an anonymity
set while ensuring a low bandwidth overhead.

Figure 2: Graphical representation of the server side defenses. Server side
defenses P-ALPaCA and D-ALPaCA first select a target for the original web
page. Then, they pad the contents of the original page as defined by the target
(Algorithm 2), and generate new padding objects if needed. The original and
morphed page will look identical to a user.

i
i

i
i

i
i

i
i

142 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

Algorithm 3 P-ALPaCA
Input: O: list of original objects
Dn: distribution over the number of objects
Dh: distribution over the size of HTML pages
Ds: distribution over the size of objects
html_size: size of the original HTML page
max_bandwidth: maximum page size

. We use x←$ D to indicate that x is sampled from distribution D
morphed← False
while not morphed do

T ← []
h←$ Dh

if h < html_size then
continue

end if
n←$ Dn

for i in 1..n do
s←$ Ds

Append s to T
end for
if sum(T) < max_bandwidth then

Try morphing O to target T (Algorithm 2)
If successful, morphed← True

end if
end while
Pad the HTML page to size h

D-ALPaCA

We propose a second server-side defense, D-ALPaCA (Deterministic-ALPaCA),
which decides deterministically by how much a page’s objects should be padded.
The defense is inspired by Tamaraw [3], which pads the number of packets in
a network trace to a multiple of a padding parameter L. D-ALPaCA has the
advantage of introducing less overheads than P-ALPaCA, but experimental
results suggest this defense is slightly less effective against a WF adversary.

D-ALPaCA (Algorithm 4) accepts as input three parameters: λ, σ and max_s,
where max_s should be a multiple of σ. It pads the number of objects of a
page to the next multiple of λ, and the size of each object to the next multiple
of σ. Then, if the target number of objects is larger than the original number
of objects, it creates padding objects of size sampled uniformly at random

i
i

i
i

i
i

i
i

DEFENSES 143

from {σ, 2σ, ...,max_s}. Experiments in section 6 evaluate how different sets
of parameters influence security and overheads.

Algorithm 4 D-ALPaCA
Input: O: list of original objects
σ: size parameter
λ: number of objects parameter
html_size: size of the original HTML page
max_s: maximum size of a padding object (should be a multiple of σ)

. We use x←$ S to indicate that x is sampled uniformly at random from a
set S
T ← []
h← next multiple of σ greater or equal to html_size
for o in O do

s← next multiple of σ greater or equal to size(o)
Append s to T

end for
n← next multiple of λ greater or equal to size(O)
while size(T) < n do

s←$ {σ, 2σ, ...,max_s}
Append s to T

end while
Morph O to target T (Algorithm 2)
Pad the HTML page to size h

Practicality of the defenses

Both P-ALPaCA and D-ALPaCA are practical to use in real-world applications.
In fact, they only require a script to morph the contents of a page periodically.
This can be done by setting up a cron job running the defense’s code, which
we release.

Since it is preferable to morph a page after each client’s visit, and it may
be difficult for the server operator to decide how frequently they should run
the cron job, we propose a more sophisticated (and flexible) alternative. The
defense should preemptively morph the web page many times, and place the
morphed pages within distinct directories on the server. Then, the server should
be configured to redirect every new request to a different directory. Once the
content of a directory has been loaded, the directory is removed, and a new one
can be created.

i
i

i
i

i
i

i
i

144 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

Third-party content

A limitation of ALPaCA is that it can only pad resources hosted in the web server,
thus content linked from third parties cannot be protected. In the evaluation
of the defense, we have intentionally omitted all third-party content because
only two out of the 100 pages in our dataset had resources from third parties.

To understand the impact of this assumption on a larger scale, we have analyzed
the prevalence of third-party resources in a crawl of 25K .onion sites: only
20% of these sites create requests to third-party domains. Furthermore, for half
the pages with third-party content, the third-party requests account for less
than 40% of total requests observed within a webpage. However, we found a
handful of sites that had more than 90% of their content hosted in third parties.
They seem to act as proxies to existing websites. With such a high percentage
of unprotected content, the defense is most likely to fail at providing protection
against website fingerprinting.

Since the average cost in terms of disk space is 5MB, a possible solution for
sites with a large proportion of third-party content would be to cache the
third-party resources in the server running the defense. We strongly discourage
this approach as if not implemented properly, the .onion site, attempting to
keep these resources updated, may become vulnerable to timing correlations
attacks by the third parties serving the content. In fact, we recommend .onion
site operators minimize the amount of third-party content they embed to their
pages and only cache static content that does not require periodic updates.

4.2 LLaMA

LLaMA is inspired by Randomized Pipelining (RP) [23]. RP modifies the
implementation of HTTP pipelining in Firefox to randomize the order of the
HTTP requests queued in the pipeline. However, RP has been shown to fail at
thwarting WF attacks in several evaluations [5, 14,30].

LLaMA is implemented as an add-on for the Tor browser that follows a similar
strategy to RP: it alters the order in which HTTP requests are sent. The main
advantage of a WF defense as a browser add-on is ease of deployment: it does
not require modifications to the Tor source code. Thus, a user can install the
add-on to enable the protection offered by the defense independently or, if the
Tor Project decides to, it could be shipped with the Tor Browser Bundle.

RP exposes a debug flag that logs extra information about its use of the
HTTP pipeline [22]. A dataset collected with this flag enabled, visiting the
same webpages that the aforementioned evaluations did, provided evidence of a

i
i

i
i

i
i

i
i

DEFENSES 145

suboptimal usage of the HTTP pipeline by RP [24]. Either the design of those
pages or the low adoption of HTTP pipelining on the servers of these pages or
CDNs in between may account for the low performance of RP [2]. Since our
defense does not depend on HTTP pipelining, it allows us to test whether these
hypotheses hold or it is actually the randomization strategy which is flawed.

Delaying requests. In order to randomize the order of the HTTP requests,
the add-on intercepts all requests generated during a visit to a website and
adds a different random delay to each one (see Figure 3). We use the statistics
extracted from subsection 5.2 to set the distribution of delays for the requests.
We take the median page load time in our crawl and set a uniform distribution
from zero to half the median load time. As a result, on average, each request
will be delayed within a window of half the page load time. In the worst case,
this approach will introduce 50% latency overhead if the last request is delayed
by the maximum time in the distribution.

Extra requests. As shown in Figure 3, every time a request is sent or a
response is received, the extension can be configured to send an extra request.
It tosses a coin to decide whether to make an additional HTTP request or not.
These fake HTTP requests are sent to a web server that serves custom-sized
resources: a parameter in the URL indicates the size of the resource that will
be sent in the response body. This allows us to fake random responses from
the client-side. Tor isolates streams in different circuits per domain, since
such fake requests are made to a different domain they will be sent through
a different circuit. This should not be a problem because the attacker cannot
distinguish them from legitimate third-party requests. However, as we discuss
in the following section, third-party content in .onion sites has low prevalence.
In addition, this approach requires a trusted server that can be queried from the
add-ons. To avoid these issues, the extension implements an alternative method
to generate extra responses: it keeps a hash table with domains as keys and
lists of request URLs sent to that domain during a browser session as values. To
generate a new request, it uniformly samples a URL from the list corresponding
to the current first-party domain and sends a request to that URL.

To change the size of legitimate requests we would require cooperation of the
server. We acknowledge that previous defenses have proposed this approach [6],
but our focus for this defense is to not require any change at the server-side.

i
i

i
i

i
i

i
i

146 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

Client

S2

Server
C1

S1

C ′1

C2

C2

δ

Figure 3: Graphical representation of the LLaMA’s operation. δ is the delay
added to C2. C ′1, in bold, requests the same resource as C1.

5 Methodology

In this section we describe the methodology that we followed to collect the data
and evaluate the defenses. This data was also used to create the probability
distribution used by P-ALPaCA.

5.1 Data collection

For the collection of the dataset we used the tor-browser-crawler10, a web
crawler that provides a driver for the Tor Browser, allowing the automation of
web page visits in conditions similar to those of regular Tor users. We added
support for the Tor Browser Bundle 5.5.5, the latest version at the time of our
crawls (March 2016) and extended the crawler to intercept all HTTP requests
and responses for future inspection. The crawler logs the size and the URL for
each HTTP request and response. The crawler also allows to modify browser
preferences. We used this feature to disable JavaScript and RP when needed.

We crawled a list of .onion sites obtained from Ahmia11, the most popular
search engine for onion services. Ahmia maintains a blacklist of illegal .onion
sites and thus are excluded from our crawls. The crawl consisted of 25, 000
.onion instances, after removing time-outs and failed loads, we captured 18, 261
instances of an .onion site load from 5, 295 unique addresses. This dataset serves
as both the basis for which we conduct WF attack experiments with our defense
in place, as a source of information when inferring the distribution of objects that

10https://github.com/webfp/tor-browser-crawler
11https://ahmia.fi

https://github.com/webfp/tor-browser-crawler
https://ahmia.fi

i
i

i
i

i
i

i
i

METHODOLOGY 147

the server-side defense should conform to, and as a source of load time statistics
for which the client-side defense decides when to inject additional requests.

5.2 Data analysis

From the 18, 261 instances, a total of 177, 376 HTTP responses and 7, 095 HTTP
requests were captured. The average amount of uploaded data per .onion site
was 256B, while the median amount of uploaded data per .onion site was 158B.
The average amount of downloaded data per .onion site was 608KB, while the
median amount of downloaded data per .onion site was 45KB. The average size
of one response was 55KB; the average size of a request was 87B. Clearly the
amount of downloaded data surpasses the amount of uploaded data as clients
are simply issuing a HTTP request for objects within the server.

The average number of requests to an .onion site was 3, while the average
number of responses was 11.

101 103 105 107
0

0.5

1

Bytes

D
en

si
ty

Figure 4: CDF of the HTTP response size in the 25K crawl (in log scale).

The average size of an .onion site then is a little over 608KB. In 2015, the
average standard website was just over 2MB, and the average number of objects
was over 100 [25,28], much larger than the average size and number of objects of
an .onion site. Clearly there is a distinct difference between standard websites
and .onion sites; standard websites are much larger and contain a greater
number of objects within the HTML index page, we note however that the
space of all standard websites is orders of magnitude greater than the space of

i
i

i
i

i
i

i
i

148 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

0 150 300
0

0.5

1

Bytes

D
en

si
ty

Figure 5: CDF of the HTTP request size in the 25K crawl.

all .onion sites and so contains much greater variance in both size and number
of objects.

From Figure 5 we see that nearly all HTTP requests were less than 100 bytes,
combining this with the knowledge that there are on average just three HTTP
requests to download the .onion site, we can infer it is most common to
download the entire site with just one or two requests after the initial HTTP
GET request. From Figure 4, 99% of HTTP responses are less than 1MB in
length, and nearly 70% are less than 10KB.

101 103 105 107

Requests

Responses

Bytes

Figure 6: Boxplot of the HTTP request and response sizes for 25K .onion sites.

From Figure 6 we see that the majority of requests are between 70− 100B, with
relatively few outliers. There is a large skew between the majority of responses
of size less than a few KB’s and a comparatively (to the number of request
outliers) large number of response outliers that are orders of magnitude larger
in size than the average response size.

i
i

i
i

i
i

i
i

EVALUATION 149

6 Evaluation

To assess the effectiveness of our defenses against WF attacks, we have crawled
the same set of pages with and without the defenses in place. Comparing the
accuracy of state-of-the-art attacks on both datasets provides an estimate of
the protection offered by the defenses.

6.1 P-ALPaCA & D-ALPaCA evaluation

We evaluate the server-side defenses when a server does not wish to transform its
network traffic to look like another .onion site but wishes to morph their traffic
so it resembles an “average” .onion site. We use results from subsection 5.2
to extract information such as the average number of objects and the average
size of these objects across all .onion sites. A participating server can then
use such information to modify their index.html page, resulting in an .onion
site resembling, at the network layer, many different .onion sites rather than a
specific targeted site.

The object distributions statistics may change over time and require periodic
updates. However, to determine whether they change and how often is out
of the scope of this paper and leave it for future research. Such an update
mechanism could be served by a trusted entity in the Tor network (e.g., a
directory authority) that supplies .onion sites with this information.

In addition to transforming the network traffic of an .onion site to resemble
many different “average” .onion sites rather than a targeted site, this method
allows the server to control the bandwidth overheads at a more fine grained
level, since the server can decide the amount and size of extra objects placed in
the index.html page.

Table 2: P-ALPaCA & D-ALPaCA latency and bandwidth overheads.

Latency Volume

% Avg. (s) % Avg. (KB)

Undefended − 3.99 − 175

P-ALPaCA 52.6 6.09 86.2 326

D-ALPaCA (2, 500, 5000) 66.3 6.63 3.66 182

D-ALPaCA (2, 5000, 5000) 56.1 6.22 9.84 193

D-ALPaCA (5, 2500, 5000) 61.7 6.44 15.1 202

D-ALPaCA (10, 5000, 5000) 41.7 5.65 44 254

i
i

i
i

i
i

i
i

150 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

The server also has control over how often their site is morphed. The frequency
of morphing depends on the estimation of how quickly an adversary can mount
an attack. If an adversary, can train on network traffic from the server and
monitor during a period where the site remains unchanged, the defense will not
be of any use. However, the time to train and launch an attack on a number
of .onion sites will likely be in the order of hours not minutes12, as long as
a server morphs the site in a shorter period than this, the training data the
attacker gathers will be of little use.

To confirm this assertion, we collected 40 network traffic loads, which we call
an instance, for each site of 100 .onion sites. We chose 100 .onion sites that
resembled the average size of an .onion site13, in terms of total page size and
number of objects. We also collected 40 P-ALPaCA morphed instances for each
of the .onion sites, such that each instance is the result of a new morphing
process14 . We then check whether an adversary, training on different morphed
versions of an .onion site, can still correctly determine the .onion site of origin.

More specifically, for each of the 100 .onion sites, we collect 40 instances.
Resulting in 4000 overall traces. We then apply our server-side defense and
re-visit the newly defended sites, resulting in another 4000 traces. We then
apply, separately, WF attacks to both undefended and defended .onion sites,
training on 60% of traces and testing on the remaining 40%. We consider the
defense successful if the WF attack accuracy on the defended .onion sites is
dramatically lower than attack accuracy on the undefended .onion sites.

To explore the parameter space, we also evaluated D-ALPaCA, under four
different parameter choices. We collected 20 instances for the same 100
.onion sites and compared attack accuracy against both the undefended and P-
ALPaCA defended .onion sites. The parameter choices were: λ - the defended
page will have a multiple of λ objects, σ - each of the defended page’s objects will
have a size which is multiple of σ,max_s - when generating new padding objects,
sample uniformly within the set [σ, 2*σ, 3*σ, ..., max_s]. Specifically, we chose
the following parameter values for (λ, σ,max_s): (2, 500, 5000), (2, 5000, 5000),
(5, 2500, 5000), (10, 5000, 5000).

User Experience: in Table 2, we see that average latencies are approximately
40-60% greater in the protected traces than in the unprotected ones. In seconds,

12For example, we used a total of 100 .onion sites in experiments, visiting each .onion
sites 40 times. We trained on 60% of data. The average page load time was around 4 seconds.
Therefore an attacker, using one machine for crawling and gathering training data, would be
able to initiate an attack after 9600 seconds. However, we note an attacker can parallelize
this process for faster attacks.

13Via section 5.
14As proposed in subsection 4.1, the .onion site is morphed on every client visit.

i
i

i
i

i
i

i
i

EVALUATION 151

the extra time that the user will spend loading the pages is between two and
three seconds. We also measured the times to load the original resources in
the protected traces with respect to loading all content, since serving extra
padding resources once all the original content is sent does not impact on user
experience. We call the time between the first request to the last legitimate
request UX-time. However, the average difference between UX-time and the
time to load all resources in a protected page is less than 200ms. We notice
that the randomization of RP often sends original requests at the end of the
transmission which explains the mild difference between UX-time and total
page load time.

Table 3: Closed world classification for .onion sites morphed via P-ALPaCA and
D-ALPaCA, with other defenses added for comparison. CUMUL depends on
packet lengths and so some defenses that only operate on packet time information
cannot be applied.

k-NN k-FP CUMUL
(%) (%) (%)

Undefended 45.6 69.6 55.6

P-ALPaCA 0.2 9.5 15.6

D-ALPaCA (2, 500, 5000) 9.5 22.7 27.0

D-ALPaCA (2, 5000, 5000) 12.5 34.4 40.0

D-ALPaCA (5, 2500, 5000) 5.8 22.3 30

D-ALPaCA (10, 5000, 5000) 7.2 22.9 33.0

Decoy [21] 4.9 11.2 X

Tamaraw [3] 6.8 14.0 X

BuFLO [9] 5.3 13.3 X

Closed World classification: we performed a closed world WF attack on
P-ALPaCA defended, D-ALPaCA defended and undefended .onion sites. If
our server-side defenses are successful, defended .onion sites should, at the
network level, look similar to one another and result in a low classification
accuracy. We use CUMUL [20], k-FP [11] k-NN [29] for evaluation15. The
number of neighbours used for classification is fixed at two.

Table 3 shows the closed-world classification results of undefended .onion sites
against .onion sites with each instance uniquely defended using P-ALPaCA or
D-ALPaCA. WF attacks are ineffective under both defenses, and in fact P-

15We use Tobias Pulls’ implementation of the k-NN website fingerprinting attack [26].

i
i

i
i

i
i

i
i

152 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

ALPaCA improves upon Tamaraw and BuFLO. D-ALPaCA does slightly worse
than the P-ALPaCA in terms of defending .onion sites, but as can be seen from
Table 2, has real advantages in terms of limiting bandwidth overheads. For ex-
ample, D-ALPaCA with parameters (2, 500, 5000), reduced k-FP accuracy from
69.6% to 22.7%, compared to the P-ALPaCA which reduced attack accuracy to
10%. But, D-ALPaCA (2, 500, 5000) required 23.6 times less bandwidth than
P-ALPaCA to achieve these results. A server operator wishing to provide a
defense to its clients while limiting the increase in bandwidth may then consider
this a worthwhile trade-off and choose to use D-ALPaCA over P-ALPaCA.

Table 4: Open world classification for .onion sites morphed with P-
ALPaCA and D-ALPaCA.

k-NN k-FP CUMUL-k-FP
(%) (%) (%)

TPR FPR TPR FPR TPR FPR

Undefended 37.0 1.0 62.1 0.8 49.7 5.4

P-ALPaCA 0.4 0.2 3.6 0.2 1.1 1.3

D-ALPaCA (2, 500, 5000) 4.5 0.2 12.0 0.4 21.4 1.4

D-ALPaCA (2, 5000, 5000) 7.5 0.4 12.6 0.4 28.8 1.2

D-ALPaCA (5, 2500, 5000) 6.0 0.3 12.7 0.3 18.7 1.3

D-ALPaCA (10, 5000, 5000) 3.4 0.3 13.3 0.3 27.3 1.0

Open World classification: in addition to closed world experiments, we
evaluated the server-side defenses in the open world setting, where we include
network traffic instances of .onion sites that are not of interest to the attacker.
We observe how the classification accuracy is affected in this setting, which is
intended to reflect a more realistic attack. We use 5, 259 unique .onion sites,
from subsection 5.2, as background traffic instances16 and set the number of
neighbours used for classification at two. Note that CUMUL only does binary
classification in the open world, classifying as either a background instance or a
foreground instance of interest, whereas k-FP and k-NN attempt to classify an
instance to the correct .onion site if it is flagged as a non-background instance.
In order to compare the results of the attacks in the open-world, we have used
the feature vectors of CUMUL while applying the k-FP classification process.
To make sure that the classification model does not affect the accuracy of the
attack, we evaluated the CUMUL features with k-FP in a closed-world and
achieved a similar accuracy to SVM.

16For k-FP, we train on 1,000 of the 5, 259 background traces and, for each .onion site, on
50-75% of instances. Whereas k-NN uses Leave-one-out cross-validation on the whole dataset.

i
i

i
i

i
i

i
i

EVALUATION 153

As we can see from Table 4 there is a dramatic decrease in attack accuracy when
both P-ALPaCA and D-ALPaCA are used, showing that if a server morphs
their site at a higher rate than the adversary can gather training data, the site
will be almost perfectly concealed.

D-ALPaCA parameter choices: Table 3 and Table 4 show there is no
notable difference in attack accuracy when changing parameters. However, as
expected, smaller parameter choices led to smaller bandwidth overheads.

6.2 LLaMA evaluation

We have crawled the same list of .onion sites as in the evaluation of ALPaCA,
under four different conditions:

JS enabled: we collected our data with no defense installed and JavaScript
enabled, the default setting in the Tor Browser.

JS disabled: we repeated the same crawl as with JS enabled but disabling
JavaScript in the Tor Browser. We keep JS disabled for the rest of our crawls.

RP with delays: we collected data with the defense only delaying requests,
altering the order of the requests as described in section 4.

Extra requests: we crawled the same data with the defense adding delays
and extra requests as described in the previous section.

We note that we have disabled RP in the Tor Browser for all the crawls above
by disabling the browser preference network.http.pipelining.

In Table 5, we show the results for the three classifiers in the closed world of 100
onion sites. We do not observe much difference in accuracy between JavaScript
enabled and disabled. This shows that our assumption of no dynamic content
holds for the list of onion sites used in our evaluation.

When the defense only adds delays to requests, the accuracy of the classifiers
decreases 10% in the k-NN classifier and has limited effect on k-FP and CUMUL.
The mild impact on the accuracy of the classifier may imply that the hypothesis
that RP does not work because servers do not support HTTP pipelining does not
hold, suggesting that the request randomization strategy is flawed, as previous
evaluations have argued [5, 30].

i
i

i
i

i
i

i
i

154 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

Table 5: Closed world classification for .onion sites under different
countermeasures.

k-NN k-FP CUMUL
(%) (%) (%)

JS enabled 64.0 55.8 52.4

JS disabled 60.8 53.4 52.7

RP with delays 46.8 47.9 49.6

Extra requests 31.5 36.0 34.8

We also evaluated the scenario in which the countermeasure, besides adding
delays, repeats previous HTTP requests. We observe a significant decrease in
accuracy to almost half the accuracy obtained in the unprotected case for the
k-NN classifier.

In Table 6, we show the overheads of LLaMA for its two different modes. We
see that overheads are around 10%. Even though the protection provided by
the defense is considerably lower than the server-side defense or other defenses
in the literature, its simplicity and the small overhead that it introduces makes
it a good candidate for a WF countermeasure.

Table 6: Latency and bandwidth overheads of the client-side defense in the
closed world.

Latency Volume

% Avg. (s) % Avg. (KB)

JS disabled − 5.01 − 126

RP with delays 8.4 5.42 X X

Extra requests 9.8 5.49 7.14 135

7 Discussion and future work

Both the ALPaCA and LLaMA have performed at least as well as state-of-
the-art defenses, showing that application layer WF defenses do indeed protect
against attacks. Next we discuss potential avenues for future research.

i
i

i
i

i
i

i
i

DISCUSSION AND FUTURE WORK 155

Ease of Deployment. We argue that application layer defenses are simpler to
implement than previously proposed approaches as they require no modifications
to existing protocols or participation from a relay in the circuit. The only
expensive part of ALPaCA comes in the form of the gathering of statistics for
the probabilistic based morphing approach. However, we suggest this cost can be
amortized over all participating servers by allowing a centralized entity to collect
this information, such as is done by directory authorities now to collect Tor relay
descriptors. Future research could determine how often these statistics must be
updated. Implementation of the client-side defense is simple, as we developed
it as a browser add-on. This could be made available to Tor clients either by
direct integration in to the Tor browser bundle, or through an add-on store.

Rate of Adoption. Initially, we expect relatively few .onion sites to
implement server-side defenses. Over time if a significant number of .onion
sites adopt ALPaCA, it is possible that a large fraction of sites will morph their
page to resemble one another. In turn, this will create stable anonymity sets of
.onion sites that have the same network traffic patterns. Finding the rate and
size of these anonymity sets is left for future work.

Clearly, smaller .onion sites are easier to protect than larger ones, as it is
impossible to morph a larger site to resemble network traffic patterns of a
smaller site. Thus, we expect larger .onion sites to be more difficult to protect
over time. However, as subsection 5.2 show, the majority of .onion sites are
small and so should be relatively simple to defend against WF attacks.

Latency and Bandwidth Overheads. All WF defenses come at the expense
of added latency and bandwidth. Our defenses allow the exact overheads to be
tuned by the participating client or server. We saw from subsection 6.1 that
P-ALPaCA adds, on average, 52.6% extra waiting time and 86.2% additional
bandwidth. We note, that compared to previous works, these overheads are
relatively small, and that due to the nature of .onion sites, even the morphed
pages are small in size compared to standard web pages. LLaMA improves
on striking a balance between overhead limitation and protection against WF
attacks. By issuing additional HTTP requests, WF attack accuracy is halved,
while only adding 9.8% in waiting time and 7.14% in bandwidth. We also
saw comparably small overheads in our D-ALPaCA defense which significantly
reduced WF attack accuracy at the expense of an additional 3.66% of bandwidth.

Natural WF Defenses. We note that compared to related works, the attack
accuracy on .onion sites seems alarmingly low. Wang et al. [29] achieved
accuracies of over 90% when fingerprinting the top 100 Alexa websites, whereas
our experiments on 100 .onion sites resulted in an accuracy of only 45.6% using
the same classifier. We have validated the results of Wang et al. on the top

i
i

i
i

i
i

i
i

156 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

100 Alexa websites, removing the possibility of a bug or some irregularity in
our own crawler. We conclude that this reduction in accuracy is an artifact of
the size and type of the majority of .onion sites. The average size of a .onion
site is substantially smaller than that of a standard web page; resulting in less
information being leaked to a classification process, allowing for the increase in
chance of misclassifications. We also found that a large number of .onion sites
are log-in pages to various forums, that are based on standard designs and so
bear a resemblance to one another. The small size and design of .onion sites
provide a natural defense against WF. By restricting the amount of information
available to a classification process, and conforming to standard website designs,
despite the small world size of .onion sites we conclude that successful website
fingerprinting attacks are considerably more difficult than on standard websites.

HTTP/2. HTTP/2 is the upcoming new version of the HTTP protocol and
is already supported by some of the domains that receive most traffic volume
in the Web [2]. HTTP/1.1 tried to provide parallelism of HTTP messages with
HTTP pipelining. However, the deployment of HTTP pipelining has not been
ideal, as many intermediaries (e.g., CDNs) do not implement it correctly [2].
HTTP/2 supports parallelism of HTTP conversations natively and overcomes
one of the main limitations of HTTP/1.1. From our experiments with request
randomization performed with LLaMA, our intuition is that randomization of
HTTP/2 will not provide better results than RP. HTTP/2 also allows to add
padding in HTTP messages to mitigate cryptographic attacks [10]. We devise
the use of HTTP/2 padding as a primitive for application-layer WF defenses.

8 Conclusion

We proposed two WF defenses for .onion sites, a server-side defense and a
client-side defense, that operate at the application layer. The choice of working
at this layer has the following benefits: i) it gives fine control over the content
of webpages, which is arguably the reason why WF attacks are possible, and ii)
it makes the defenses easy to implement.

The server-side defenses morph the content of a webpage before it is loaded
by a client. The resulting webpage looks exactly as the original in terms of its
visual content, but it behaves as a completely different page at the network
level, where the WF adversary sits. Intuitively, since the adversary will observe
a different webpage for each load, they will not be able to perform the attack.
Experiments on .onion sites confirm this intuition, and show that this defense
effectively reduces the accuracy of an adversary.

i
i

i
i

i
i

i
i

REFERENCES 157

We have designed and evaluated a lightweight client-side defense at the
application layer. The evaluation shows that this defense reduces the accuracy
of the attack in the onion world significantly and, even though it offers lower
protection than the server-side defenses, it provides a high security versus
overhead ratio. Furthermore, its simplicity and its implementation as an add-on
for the Tor Browser favor its deployment in the live Tor network.

References

[1] SecureDrop: the open-source whistleblower submission system. https:
//securedrop.org.

[2] HTTP/2 specs. "https://http2.github.io/", 2015. (accessed: August,
2016).

[3] Xiang Cai, Rishab Nithyanand, and Rob Johnson. CS-BuFLO: A congestion
sensitive website fingerprinting defense. In ACM Workshop on Privacy in
the Electronic Society (WPES), pages 121–130. ACM, 2014.

[4] Xiang Cai, Rishab Nithyanand, and Rob Johnson. Glove: A bespoke website
fingerprinting defense. In ACM Workshop on Privacy in the Electronic
Society (WPES), pages 131–134. ACM, 2014.

[5] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching
from a distance: Website fingerprinting attacks and defenses. In ACM
Conference on Computer and Communications Security (CCS), pages 605–
616. ACM, 2012.

[6] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-channel
leaks in web applications: A reality today, a challenge tomorrow. In IEEE
Symposium on Security and Privacy (S&P), pages 191–206. IEEE, 2010.

[7] Heyning Cheng and Ron Avnur. Traffic analysis of ssl encrypted
web browsing. Project paper, University of Berkeley, 1998. Available
at http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/
final-reports/ronathan-heyning.ps.

[8] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security
Symposium, pages 303–320. USENIX Security Symposium, 2004.

[9] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton.
Peek-a-Boo, I still see you: Why efficient traffic analysis countermeasures

https://securedrop.org
https://securedrop.org
https://http2.github.io/
http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps

i
i

i
i

i
i

i
i

158 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

fail. In IEEE Symposium on Security and Privacy (S&P), pages 332–346.
IEEE, 2012.

[10] Yoel Gluck, Neal Harris, and Angelo Prado. Breach: reviving the crime
attack. Unpublished manuscript, 2013.

[11] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable
website fingerprinting technique. In USENIX Security Symposium, pages
1–17. USENIX Association, 2016.

[12] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website
fingerprinting: attacking popular privacy enhancing technologies with the
multinomial Naïve-Bayes classifier. In ACM Workshop on Cloud Computing
Security, pages 31–42. ACM, 2009.

[13] Andrew Hintz. Fingerprinting websites using traffic analysis. In Privacy
Enhancing Technologies Symposium (PETS), pages 171–178. Springer,
2003.

[14] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel
Greenstadt. A critical evaluation of website fingerprinting attacks. In
ACM Conference on Computer and Communications Security (CCS), pages
263–274. ACM, 2014.

[15] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew
Wright. Toward an efficient website fingerprinting defense. In European
Symposium on Research in Computer Security (ESORICS), pages 27–46.
Springer, 2016.

[16] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas
Devadas. Circuit fingerprinting attacks: Passive deanonymization of tor
hidden services. In USENIX Security Symposium, pages 287–302. USENIX
Association, 2015.

[17] Marc Liberatore and Brian Neil Levine. "Inferring the source of
encrypted HTTP connections". In ACM Conference on Computer and
Communications Security (CCS), pages 255–263. ACM, 2006.

[18] Liming Lu, EC Chang, and MC Chan. Website fingerprinting and
identification using ordered feature sequences. In European Symposium
on Research in Computer Security (ESORICS), pages 199–214. Springer,
2010.

[19] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky K. C.
Chang, and Roberto Perdisci. HTTPOS: Sealing information leaks with
browser-side obfuscation of encrypted flows. In Network & Distributed
System Security Symposium (NDSS). IEEE Computer Society, 2011.

i
i

i
i

i
i

i
i

REFERENCES 159

[20] Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan
Pennekamp, Klaus Wehrle, and Thomas Engel. Website fingerprinting
at internet scale. In Network & Distributed System Security Symposium
(NDSS), pages 1–15. IEEE Computer Society, 2016.

[21] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.
Website fingerprinting in onion routing based anonymization networks.
In ACM Workshop on Privacy in the Electronic Society (WPES), pages
103–114. ACM, 2011.

[22] Mike Perry. Committed to the official Tor Browser git repository, https:
//gitweb.torproject.org/tor-browser.git/commit/?id=354b3b.

[23] Mike Perry. Experimental defense for website traffic fingerprinting.
Tor Project Blog. https://blog.torproject.org/blog/experimental-
defense-website-traffic-fingerprinting, 2011. (accessed: October
10, 2013).

[24] Mike Perry, Gunes Acar, and Marc Juarez. personal communication.

[25] Alex Pinto. Web Page Sizes: A (Not So) Brief History of Page Size through
2015. yottaa.com. "http://www.yottaa.com/company/blog/application-
optimization/a-brief-history-of-web-page-size/", 2015. (accessed:
April 18, 2016).

[26] Tobias Pulls. A golang implementation of the kNN website fingerprinting
attack. "https://github.com/pylls/go-knn", 2016. (accessed: May,
2016).

[27] Qixiang Sun, Daniel R Simon, Yi-Min Wang, Wilf Russel, Venkata N.
Padmanabhan, and Lili Qiu. Statistical identification of encrypted web
browsing traffic. In IEEE Symposium on Security and Privacy (S&P),
pages 19–30. IEEE, 2002.

[28] MobiForge. mobiforge.com. "https://mobiforge.com/research-
analysis/the-web-is-doom", 2016. (accessed: April 20, 2016).

[29] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg.
Effective attacks and provable defenses for website fingerprinting. In
USENIX Security Symposium, pages 143–157. USENIX Association, 2014.

[30] Tao Wang and Ian Goldberg. Improved Website Fingerprinting on Tor.
In ACM Workshop on Privacy in the Electronic Society (WPES), pages
201–212. ACM, 2013.

https://gitweb.torproject.org/tor-browser.git/commit/?id=354b3b
https://gitweb.torproject.org/tor-browser.git/commit/?id=354b3b
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
http://www.yottaa.com/company/blog/application-optimization/a-brief-history-of-web-page-size/
http://www.yottaa.com/company/blog/application-optimization/a-brief-history-of-web-page-size/
https://github.com/pylls/go-knn
https://mobiforge.com/research-analysis/the-web-is-doom
https://mobiforge.com/research-analysis/the-web-is-doom

i
i

i
i

i
i

i
i

160 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

[31] Charles V Wright, Scott E Coull, and Fabian Monrose. Traffic morphing:
An efficient defense against statistical traffic analysis. In Network &
Distributed System Security Symposium (NDSS). IEEE Computer Society,
2009.

A Appendices

A.1 Onion service target experiments

In addition to morphing a page via P-ALPaCA and D-ALPaCA, we evaluate
the efficacy of our server-side defense on a number of .onion sites via morphing
to a target .onion site. We dispense with applying a new morphing process for
each capture of an .onion site load. Instead, we morph the .onion site once
and capture 40 instances of this morphed site. We show that even if a server
morphs their network traffic once, if it is morphed towards a targeted .onion
site, this is enough to thwart WF attacks.

SecureDrop

To protect its users, SecureDrop may want to morph the network traffic pattern
of its page load to look like that of an .onion site which would not raise
suspicion on a visit. We collected 40 instances of network traffic when visiting
SecureDrop; we then chose 40 target .onion sites which our server-side defense
would morph SecureDrop’s traffic to look like.

We considered a powerful adversary, who knows all sites that the defense would
like to morph traffic to look like. For each target site, the adversary could train
on all the undefended SecureDrop network traffic and the network traffic of
the target .onion site, and they must classify an unknown traffic instance as
either SecureDrop or the target .onion site. In our experiment, all new traffic
instances were the morphed SecureDrop page; under a perfect defense all should
have been classified as the target site

Using k-FP with 1,000 trees [11], the average binary classification accuracy over
the 40 different .onion sites was 0.372± 0.416. Overall, our server-side defense
was successful in obscuring which site a client was visiting, though we saw a large
variation: some onion sites perfectly concealed the true label while others failed.

The average communication cost (incoming and outgoing size of packets) of the
SecureDrop page was 15 KB, and it loaded on average in 4.62 seconds. The
average communication cost of the morphed page was 373 KB and it loaded in

i
i

i
i

i
i

i
i

APPENDICES 161

6.70 seconds. The size of the morphed page entirely depends on the target page
we chose to morph the SecureDrop page towards, if a smaller target page had
been chosen this would result in a smaller bandwidth overhead. However, the
average bandwidth overhead is still smaller than that of a standard website.

Facebook

To generalize our defense beyond SecureDrop we chose 100 .onion sites that
may also wish to protect visiting clients from WF attacks, by morphing their
traffic to that of the Facebook .onion site17. We collected 40 traffic instances
for each .onion site. All WF attacks were applied in the same manner as in
subsection 6.1.

Binary classification: the average binary classification accuracy over the 100
.onion sites was 0.098± 0.253. Even when the adversary knows undefended
and target site, the attack’s accuracy is below 10%.

Closed World classification: we also compared a closed world attack on
the 100 undefended .onion sites and the same attack after morphing those sites
to look like Facebook .onion site. If our server side defense is successful the
100 morphed .onion sites should, at the network level, look like the Facebook
.onion site, resulting in a low classification accuracy.

Table 8, shows as expected, attack accuracy decreases when onion sites are
morphed to resemble Facebook’s network traffic patterns.

Table 7: Facebook experiment latency and bandwidth overheads.

Latency Volume

% Avg. (s) % Avg. (KB)

Undefended − 3.99 − 175

Defended 27.3 5.08 80 315

Open World classification: in addition to closed world experiments, we
evaluated the server-side defense in the open world setting, where we included
instances of .onion sites that were not of interest to the attacker. We used

17https://facebookcorewwwi.onion

https://facebookcorewwwi.onion

i
i

i
i

i
i

i
i

162 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

Table 8: Closed world classification for .onion sites morphed to Facebook’s
.onion site.

k-NN k-FP CUMUL
(%) (%) (%)

Undefended 45.6 69.6 55.6

Defended 9.4 55.6 53.6

5, 259 unique .onion sites, from subsection 5.2, as background traffic instances.
Table 9 shows, as expected, attack’s accuracy decreases when sites are morphed
to resemble Facebook’s network traffic patterns.

Table 9: Open world classification for .onion sites morphed to Facebook’s
.onion site.

k-NN k-FP CUMUL-k-FP
(%) (%) (%)

TPR FPR TPR FPR TPR FPR

Undefended 30.8 2.6 59.3 5.2 53.2 5.7

Defended 7.8 0.9 44.9 1.8 44.4 2.0

Table 7 shows the average time to load a page only increases by 1.09s when
morphing a page to the Facebook .onion site. We also see that the bandwidth
overhead is, compared to previous works, quite tolerable. The total cost of
communication rises by only 140KB.

B KDE distributions

We used Kernel Density Estimation (KDE) to estimate the distributions of
number of objects (Figure 7), size of html pages (Figure 8) and size of objects
(Figure 9). KDE is a non-parametric method for estimating a probability
distribution given a data sample, which provides smoother estimates than
histograms. KDE requires to specify a kernel (Gaussian, in our case) and a
bandwidth. The bandwidth impacts on the smoothness of the estimate: a
larger bandwidth tends to provide better smoothness, but less fidelity to the

i
i

i
i

i
i

i
i

KDE DISTRIBUTIONS 163

original data. To determine the bandwidth for each of our distributions, we
first performed Grid Search Cross Validation using scikit-learn library18, to
obtain a rough idea of the bandwidth ranges. Then, we manually trimmed the
bandwidth to achieve what visually seemed to reflect well the variance of data,
but also provided smooth distributions. For our purposes, it was important to
have smooth estimates to guarantee a good quality in sampling (e.g., to avoid
spikes). We used a bandwidth of 2 for the distribution over objects, and of 2000
for both the HTML and object sizes distributions.

0 10 20 30 40 50 60

0.00000

0.02000

0.04000

0.06000

0.08000

0.10000

Number of objects

Figure 7: KDE distribution of the number of objects.

18http://scikit-learn.org/

http://scikit-learn.org/

i
i

i
i

i
i

i
i

164 WEBSITE FINGERPRINTING DEFENSES AT THE APPLICATION LAYER

0K 10K 20K 30K 40K 50K

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

Bytes

Figure 8: KDE distribution of the HTML sizes.

0K 10K 20K 30K 40K 50K

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Bytes

Figure 9: KDE distribution of the object sizes.

i
i

i
i

i
i

i
i

Publication

How Unique is your Onion?
An Analysis of the
Fingerprintability of Tor
Onion Services

Publication Data

Overdorf, R., Juarez, M., Acar, G., Greenstadt, R.,
and Diaz, C. How unique is your onion? an analysis of the
fingerprintability of tor onion services. In ACM Conference on
Computer and Communications Security (CCS) (2017), ACM,
pp. 2021–2036

Contributions

• Secondary author with substantial contributions.

165

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

How Unique Is Your Onion? An Analysis of the
Fingerprintability of Tor Onion Services

Rebekah Overdorf1, Marc Juarez2, Gunes Acar2,
Rachel Greenstadt1, and Claudia Diaz2

1 Drexel University, Philadelphia, US
2 KU Leuven, ESAT/COSIC and iMinds, Leuven, Belgium

Abstract. Recent studies have shown that Tor onion (hidden)
service websites are particularly vulnerable to website fingerprint-
ing attacks due to their limited number and sensitive nature.
In this work we present a multi-level feature analysis of onion
site fingerprintability, considering three state-of-the-art website
fingerprinting methods and 482 Tor onion services, making this the
largest analysis of this kind completed on onion services to date.
Prior studies typically report average performance results for
a given website fingerprinting method or countermeasure. We
investigate which sites are more or less vulnerable to fingerprinting
and which features make them so. We find that there is a high
variability in the frequency at which sites are classified (and
misclassified) by these attacks, implying that average performance
may not be informative of the risks of particular sites.
We use a number of methods to analyze the features exploited
by the different website fingerprinting methods and discuss what
makes onion service sites more or less easily identifiable, both in
terms of their traffic traces as well as their webpage design. We
study misclassifications to understand how onion services sites
can be redesigned to be less vulnerable to website fingerprinting
attacks. Our results also inform the design of website fingerprinting
countermeasures and their evaluation considering likely disparate
impact across sites.

1 Introduction

Website fingerprinting attacks apply supervised classifiers to network traffic
traces to identify patterns that are unique to a web page. These attacks can

167

i
i

i
i

i
i

i
i

168 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

circumvent the protection afforded by encryption [7,13,19,25] and the metadata
protection of anonymity systems such as Tor [9,12]. To carry out the attack the
adversary first visits the websites, records the network traffic of his own visits,
and extracts from it a template or fingerprint for each site. Later, when the
victim user connects to the site (possibly through Tor), the adversary observes
the victim’s traffic and compares it to the previously recorded templates, trying
to find a match. Website fingerprinting can be deployed by adversaries with
modest resources who have access to the communications between the user
and the Tor entry guard. There are many entities in a position to access this
communication, including wireless router owners, local network administrators
or eavesdroppers, Internet Service Providers (ISPs), and Autonomous Systems
(ASes), among other network intermediaries.

Despite the high success rates initially reported by website fingerprinting
attacks [6, 28], their practicality in the real-world remains uncertain. A 2014
study showed that the success of the attacks is significantly lower in realistic
scenarios than what is reported by evaluations done under artificial laboratory
conditions [15]. Moreover, using a very large world of websites, Panchenko et
al. showed that website fingerprinting attacks do not scale to the size of the
Web [21], meaning that, in practice, it is very hard for an adversary to use this
attack to recover the browsing history of a Tor user.

Kwon et al. demonstrated, however, that a website fingerprinting adversary can
reliably distinguish onion service connections from other Tor connections [17].
This substantially reduces the number of sites to consider when only targeting
onion services, as the universe of onion services is orders of magnitude smaller
than the web, which makes website fingerprinting attacks potentially effective
in practice. In addition, Onion services are used to host sensitive content such
as whistleblowing platforms and activist blogs, making website fingerprinting at-
tacks on this sites particularly attractive, and potentially very damaging [8]. For
these reasons, we focus our analysis on onion services rather than the whole web.

In this work we choose to model the set of onion services as a closed world.
Our dataset contains as many landing pages of the hidden service world as was
possible for us to collect at the time. After removing pages with errors and
pages that are duplicates of other sites, we were left with a sanitized dataset of
482 out of the 1,363 onion services that were crawled. While the exact size of the
complete onion service world cannot be known with certainty, onionscan was
able to find 4,400 onion services on their latest scan (this number is not sanitized
for faulty or duplicated sites) [18]. This indicates that our set, while incomplete,
contains a significant portion of the onion service world. We consider that an
actual attacker can compile an exhaustive list of onion services, which would
effectively yield a closed world scenario, since, once the adversary establishes
that a user is visiting a onion service, the onion service in question will be one

i
i

i
i

i
i

i
i

INTRODUCTION 169

on the adversary’s list. We note that closed world models are not realistic when
considering the entire web, rather than just onion services.

Prior evaluations of website fingerprinting attacks report aggregate metrics
such as average classifier accuracy. However, we find that some websites have
significantly more distinctive fingerprints than others across classifiers, and that
average metrics such as overall classifier accuracy do not capture this diversity.

In this work, we study what we call the fingerprintability of websites and investi-
gate what makes a page more vulnerable to website fingerprinting. This issue has
practical relevance because adversaries interested in identifying visits to a par-
ticularly sensitive site may not care about the accuracy of the classifier for other
sites, and thus the fingerprintability of that specific site matters. Similarly, the
administrators of onion services likely care more about the vulnerability of their
users to fingerprinting attacks, rather than the average vulnerability of a onion
services to the attack. We extract lessons from our analysis to provide recommen-
dations to onion service designers to better protect their sites against website fin-
gerprinting attacks, including an analysis of a high profile SecureDrop instance.

The contributions of this study are:

Large .onion study. 3 We collected the largest dataset of onion services for
website fingerprinting to date and evaluated the performance of three state-of-
the-art classifiers in successfully identifying onion service sites. For comparison,
previous studies considered worlds of 30 [11] or 50 [8, 17] onion services, an
order of magnitude smaller than our study, that analyses 482 onion services.

Fingerprintability matters. While the average accuracy achieved by the
classifiers is 80%, we found that some sites are consistently misclassified by
all of the methods tested in this work, while others are consistently identified
correctly, and yet others provide mixed results. In particular, 47% of sites in
our data set are classified with greater than 95% accuracy, while 16% of sites
were classified with less than 50% accuracy. Throughout this paper, we use
the term fingerprintable to mean how many of the visits are correctly classified.
Depending on the requirements of the specific analysis, we use different ways to
distinguish more and less fingerprintable sites. This includes comparing top 50
sites to bottom 50 sites or taking sites with F1 < 0.33 as less fingerprintable
and sites with F1 > 0.66 as more fingerprintable.

Errors made by different methods are correlated. Fully 31% of
misclassified instances were misclassified by all three classifiers. This implies
that weaknesses of the individual classifiers cannot be fully overcome using

3This data along with the code used for analysis in this work is available at https:
//cosic.esat.kuleuven.be/fingerprintability/

https://cosic.esat.kuleuven.be/fingerprintability/
https://cosic.esat.kuleuven.be/fingerprintability/

i
i

i
i

i
i

i
i

170 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

ensemble methods. We nonetheless propose an ensemble that combines all three
classifiers, slightly improving the results offered by the best individual classifier.

Novel feature analysis method. We present a method for analyzing finger-
printability that considers the relationship between the inter-class variance and
intra-class variance of features across sites. The results of this analysis explain
which features make a site fingerprintable, independently of the classifier used.

Size matters. We show that size-based features are the most important in
identifying websites and that when sites are misclassified, they are typically
confused with sites of comparable size. We show that large sites are consistently
classified with high accuracy.

Dynamism matters for small sites. While large sites are very finger-
printable, some small sites are harder than others to classify. We find that
misclassified small sites tend to have more variance, and that features related
to size variability are more distinguishing in sets of small sites. Put simply,
smaller sites that change the most between visits are the hardest to identify.

Analysis of site-level features. Site-level features are website design features
that cannot be (directly) observed in the encrypted stream of traffic but can be
tweaked by the onion service operators. We identify which site-level features
influence fingerprintability and we provide insights into how onion services can
be made more robust against website fingerprinting attacks.

Insights for Adversarial Learning. Website fingerprinting is a dynamic,
adversarial learning problem in which the attacker aims to classify a traffic
trace and the defender aims to camouflage it, by inducing misclassifications
or poisoning the learning system. In the parlance of adversarial learning [2],
we have conducted an exploratory attack against three different approaches,
to help site owners and the Tor network design better causative attacks. A
causative attack is an attack against a machine learning system that manipulates
the training data of a classifier. Most adversarial learning approaches in the
literature consider the adversary to be the evader of the learning system, not the
learner. However, this is not the case in website fingerprinting nor in many other
privacy problems. For this reason, most adversarial learning studies investigate
an attack on a specific learning algorithm and feature set. In contrast, we study
the three top-performing learners and introduce a classifier-independent feature
analysis method to study the learnability of a particular class (a web page).

i
i

i
i

i
i

i
i

BACKGROUND AND RELATED WORK 171

2 Background and related work

Encryption alone does not hide source and destination IP addresses, which
can reveal the identities of the users and visited website. Anonymous
communications systems such as Tor [9] route communications through multiple
relays, concealing the destination server’s address from network adversaries.
Moreover, Tor supports onion services which can be reached through Tor while
concealing the location and network address of the server.

Website fingerprinting is a traffic analysis attack that allows an attacker to
recover the browsing history of a user from encrypted and anonymized streams.
Prior work has studied the effectiveness of this attack on HTTPS [7], encrypted
web proxies [13, 25], OpenSSH [19], VPNs [12], and various anonymity systems
such as Tor and JAP [12]. We focus on Tor because it is, with more than two
million daily users [1], the most popular anonymous communications system.

In website fingerprinting the adversary is a network eavesdropper who can
identify the user by her IP address, but who does not know which website the
user is visiting (see Figure 1). The attacker cannot decrypt the communication,
but can record the network packets generated by the activity of the user. To
guess the web page that the user has downloaded, the attacker compares the
traffic recorded from the user with that of his own visits to a set of websites.
The best match is found using a statistical classifier.

Website fingerprinting attacks are based on supervised classifiers where the
training instances are constructed from the traffic samples or traces the adversary
collects browsing sites of interest with with Tor, and the test samples are traces
presumably captured from Tor users’ traffic. Next, we will give an overview of
website fingerprinting attacks that have been proposed in the literature.

2.1 Attacks against Tor

In 2009, Herrmann et al. proposed the first website fingerprinting attack against
Tor, based on a Naive Bayes classifier and frequency distributions of packet
lengths [12]. Their study only achieved an average accuracy of 3% for 775
websites, but their attack was improved by Panchenko et al. who used a Support
Vector Machine (SVM) and extracted additional features from traffic bursts to
classify Herrmann et al.’s dataset with more than 50% accuracy [22].

Panchenko et al.’s study was also the first to perform an open-world evaluation
of website fingerprinting attacks [22]. Prior work relied on a closed-world
assumption, which assumes that the universe of possible pages is small enough
that adversary can train the classifier on all sites. The open-world evaluation is

i
i

i
i

i
i

i
i

172 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

−
Entry

Tor network

Client
a.onion

b.onion

c.onion

Adversary

Figure 1: The client visits an onion service site over the Tor network. The
adversary has access to the (encrypted) link between the client and the entry
to the Tor network. For clarity, we have omitted the six-hop circuit between
the client and the onion service. The attacker cannot observe traffic beyond the
entry node.

appropriate for a web environment as it accounts for users visiting pages that
the classifier has not been trained on. Based on Herrman et al.’s dataset, Cai et
al. [6] achieved more than 70% accuracy in an open world setting. Wang and
Goldberg’s [28] approach obtained over 90% accuracy for 1,000 sites in an open
world setting.

The results reported by these attacks were criticized for using experimental
conditions that gave unrealistic advantages to the adversary, compared to real
attack settings [15]. However, new techniques have been shown to overcome some
of those limitations, suggesting that attacks may be successful in the wild [26].

Even though an open world is a more realistic evaluation setting than a closed
world for the web, our evaluation considers a closed world because: i) the
universe of onion services is small enough that is feasible for an adversary to
build a database of fingerprints for all existing onion services; and ii) we are
interested in the best-case scenario for the adversary because we evaluate the
vulnerability to website fingerprinting from a defender’s point of view.

As in most prior work on website fingerprinting, we only consider the homepages
of the websites and not inner pages within a website. We justify this for
onion services by arguing that, given their unusable naming system and their
shallowness in terms of not having a deep structure, it is reasonable to assume
that visitors of onion services will land first on homepage more often than for
regular sites before logging in or further interacting with the site.

In this paper, we focus only on onion services because a 2015 study showed that
the website fingerprinting adversary can distinguish between visits to onion
services and regular websites with high accuracy [17]. Even though Panchenko et
al.’s study shows that website fingerprinting does not scale to the Web, Website

i
i

i
i

i
i

i
i

BACKGROUND AND RELATED WORK 173

fingerprinting has been identified as a potential threat for onion services for two
reasons [8]: first, in contrast to the Web’s size, the onion service space’s size
may be sufficiently small for an adversary to build a fingerprint database for all
existing onion services; second, onion services tend to host sensitive content and
visitors of these sites may be subject to more serious, adverse consequences.

2.2 State-of-the-art attacks

We have selected three classifiers proposed in recent prior work for our study
because they represent the most advanced and effective website fingerprinting
attacks to date. Each attack uses different classification algorithms and feature
sets, although they have some features in common. The details of each classifier
are as follows:

Wang-kNN [27]: Wang et al. proposed an attack based on a k-Nearest
Neighbors (k-NN) classifier that used more than 3,000 traffic features. Some
of the most relevant features are the number of outgoing packets in spans of
30 packets, the lengths of the first 20 packets, and features that capture traffic
bursts, i.e., sequences of packets in the same direction. They also proposed an
algorithm to tune the weights of the custom distance metric used by the k-NN
that minimizes the distance among instances that belong to the same site. They
achieved between 90% to 95% accuracy on a closed world of 100 non-onion
service websites [27]. Kwon et al. evaluated their own implementation of the
attack for 50 onion service sites and obtained 97% accuracy.

CUMUL [21]: Panchenko et al. designed CUMUL, an attack based on a
Radial Basis Function kernel (RBF) SVM. Each feature instance is a 104-
coordinate vector formed by the number of bytes and packets in each direction
and 100 interpolation points of the cumulative sum of packet lengths (with
direction). They report success rates that range between 90% and 93% for 100
regular sites. In addition, they collected the largest and most realistic dataset
of non-onion service websites, including inner pages of websites and popular
links extracted from Twitter. They conclude that website fingerprinting does
not scale to such large dataset, as classification errors increase with the size of
the world.

k-Fingerprinting (k-FP) [11]: Hayes and Danezis’s k-FP attack is based
on Random Forests (RF). Random Forests are ensembles of decision trees that
are randomized and averaged to reduce overfitting. In the open world, they use
the leafs of the random forest to encode websites. This allows them to represent
websites in function of the outputs of the random forest, capturing the relative
distance to pages that individual trees have confused with the input page. The

i
i

i
i

i
i

i
i

174 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

instances extracted from the random forest are then fed into a k-NN classifier
for the actual classification. The study uses a set of 175 features that includes
variations of features in the literature as well as timing features such as the
number of packets per second. Hayes and Danezis evaluated the attack on a
limited set of 30 onion services and obtained 90% classification accuracy [11].

In the following subsection we provide an overview of prior results on features
that has inspired the feature selection made by these three attacks.

2.3 Feature analysis for website fingerprinting

We consider two types of features: network-level and site-level features. Network-
level features are extracted from the stream of TCP packets and are the typical
features used in website fingerprinting attacks. Site-level features are related
to the web design of the site. These features are not available in the network
traffic meta-data, but the adversary still has access to them by downloading
the site.

Most website fingerprinting feature analyses have focused on network-level
features and have evaluated their relevance for a specific classifier [5, 10, 22].
In particular, Hayes and Danezis [11] perform an extensive feature analysis
by compiling a comprehensive list of features from the website fingerprinting
literature as well as designing new features. In order to evaluate the importance
of a feature and rank it, they used the random forest classifier on which their
attack is based.

Unlike prior work, our network-level feature analysis is classifier-independent,
as we measure the statistical variance of features among instances of the same
website (intra-class variance) and among instances of different websites (inter-
class variance).

2.4 Website fingerprinting defenses

Dyer et al. presented BuFLO, a defense that delays real messages and adds
dummy messages to make the traffic look constant-rate, thus concealing the
features that website fingerprinting attacks exploit. They conclude that coarse-
grained features such as page load duration and total size are expensive to hide
with BuFLO and can still be used to distinguish websites [10].

There have been attempts to improve BuFLO and optimize the padding at the
end of the page download to hide the total size of the page [4,6]. These defenses
however incur high latency overheads that make them unsuitable for Tor. To

i
i

i
i

i
i

i
i

DATA COLLECTION AND PROCESSING 175

avoid introducing delays, a website fingerprinting defense based solely on adding
dummy messages was proposed by Juarez et al. [16]. These defenses aim at craft-
ing padding to obfuscate distinguishing features exploited by the attack. Instead,
we look at sites and examine what makes them more or less fingerprintable.

There are defenses specifically designed for Tor that operate at the application
layer [8, 20, 23]. However, these defenses do not account either for feature
analyses that can help optimize the defense strategy. Our study is the first
to analyze the features at both the website and network layers. Based on our
results, we discuss ways to reduce the fingerprintability of onion service sites
and inform the design of server and client-side website fingerprinting defenses
without requiring any changes to the Tor protocol itself.

3 Data collection and processing

We used the onion service list offered by ahmia.fi, a search engine that indexes
onion services. We first downloaded a list of 1,363 onion service websites and
found that only 790 of them were online using a shell script based on torsocks.
We crawled the homepage of the 790 online onion services.

Prior research on website fingerprinting collected traffic data by grouping visits
to pages into batches, visiting every page a number of times each batch [15, 28].
All visits in a batch used the same Tor instance but Tor was restarted and its
profile wiped between batches, so that visits from different batches would never
use the same circuit. The batches were used as cross-validation folds in the
evaluation of the classifier, as having instances collected under the same circuit
in both training and test sets gives an unfair advantage to the attacker [15, 28].

In this study, we used the same methodology to collect data, except that we
restarted Tor on every visit to avoid using the same circuit to download the
same page multiple times. We ran the crawl on a cloud based Linux machine
from a data center in the US in July 2016. The crawl took 14 days to complete
which allowed us to take several snapshots of each onion service in time.

We used Tor Browser version 6.0.1 in combination with Selenium browser
automation library 4. For each visit, we collected network traffic, HTML source
code of the landing page, and HTTP request-response headers. We also saved a
screenshot of each page.

4http://docs.seleniumhq.org/

http://docs.seleniumhq.org/

i
i

i
i

i
i

i
i

176 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

We captured the network traffic traces using the dumpcap 5 command line tool.
After each visit, we filtered out packets that were not destined to the Tor guard
node IP addresses. Before each visit, we downloaded and processed the Tor
network consensus with Stem 6 to get the list of current guard IP addresses.

The HTML source code of the index page was retrieved using Selenium’s
page_source property. The source code and screenshots are used to extract
site-level features, detect connection errors and duplicate sites. The HTTP
requests and response headers are stored using a custom Firefox browser add-on.
The add-on intercepted all HTTP requests, including the dynamically generated
ones, using the nsIObserverService of Firefox 7.

Finally, we collected the logs generated by Tor Browser binary and Tor controller
logs by redirecting Tor Browser’s process output to a log file.

3.1 Processing crawl data

We ran several post-processing scripts to make sure the crawl data was useful
for analysis.

Remove offline sites. Analyzing the collected crawl data, we removed 573
sites as they were found to be offline during the crawl.

Remove failed visits. We have also removed 14481 visits that failed due to
connection errors, possibly because some onion sites have intermittent uptime
and are reachable temporarily.

Outlier removal. We used Panchenko et al.’s outlier removal strategy to
exclude packet captures of uncommon sizes compared to other visits to the
same site [21]. This resulted in the removal of 5264 visits.

Duplicate removal. By comparing page title, screenshot and source code of
different onion services, we found that some onion service websites are served
on multiple .onion addresses. We eliminated 159 duplicate sites by removing
all copies of the site but one.

Threshold by instances per website. After removing outliers and errored
visits, we had an unequal number of instances across different websites. Since
the number of training instances can affect classifier accuracy, we set all websites
to have the same number of instances. Most datasets in the literature have
between 40 and 100 instances per website and several evaluations have shown

5https://www.wireshark.org/docs/man-pages/dumpcap.html
6https://stem.torproject.org/
7https://developer.mozilla.org/en/docs/Observer_Notifications#HTTP_requests

https://www.wireshark.org/docs/man-pages/dumpcap.html
https://stem.torproject.org/
https://developer.mozilla.org/en/docs/Observer_Notifications#HTTP_requests

i
i

i
i

i
i

i
i

ANALYSIS OF WEBSITE CLASSIFICATION ERRORS 177

that the accuracy saturates after 40 instances [21, 28]. We set the threshold at
70 instances which is within the range of number of instances used in the prior
work. Choosing a greater number of instances would dramatically decrease the
final number of websites in the dataset. We removed 84 sites for not having a
sufficient number of instances and removed 9,344 extra instances.

Feature Extraction. Following the data sanitization steps outlined above,
we extract features used by the three classifiers. Further, we extract site level
features using the HTML source, screenshot, HTTP requests and responses.
Site level features are explained in Section 6.

In the end, the dataset we used had 70 instances for 482 different onion sites.

4 Analysis of website classification errors

This section presents an in-depth analysis of the successes and failures of
the three state-of-the-art website fingerprinting methods. This analysis helps
identify which pages are the most fingerprintable and which are more likely to
confuse the classifiers, giving insight into the nature of the errors produced by
the classifiers.

4.1 Classifier accuracy

Even though the classification problem is not binary, we binarize the problem
by using a one-vs-rest binary problem for each site: a True Positive (TP) is an
instance that has been correctly classified and False Positive (FP) and False
Negative (FN) are both errors with respect to a fixed site w; a FP is an instance
of another site that has been classified as w; a FN is an instance of w that has
been classified as another site.

In the closed world we measure the accuracy using the F1-Score (F1). The
F1-Score is a complete accuracy measure because it takes into account both
Recall (TPR) and Precision (PPV). More precisely, the F1-Score is the harmonic
mean of Precision and Recall: if either is zero, the F1-Score is zero as well, and
only when both achieve their maximum value, the F1-Score does so too.

Note that there are the same total number of FPs and FNs, since a FP of wy
that actually belongs to wx is at the same time a FN of wx. Thus, in the closed
world the total F1-Score equals both Precision and Recall. However, when we
focus on a particular site, the FP and FN for that site are not necessarily the
same (see Table 2).

i
i

i
i

i
i

i
i

178 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

Table 1: Closed world classification results for our dataset of 482 onion services
(33,740 instances in total).

k-NN CUMUL k-FP

TPR 69.97% 80.73% 77.71%

FPR 30.03% 19.27% 22.29%

We have applied the classifiers to our dataset of 482 onion services and evaluated
the classification using 10-fold cross-validation. Cross-validation is a standard
statistical method to evaluate whether the classifier generalizes for instances
that it has not been trained on. In most cases, ten is the recommended number
of folds in the machine learning literature and the standard in prior website
fingerprinting work. The results for each classifier are summarized in Table 1
where we report the total number of TPs and FPs and the average accuracy
obtained in the 10-fold cross-validation. Thus, we note that using TPR as an
accuracy metric is sound in the closed world but, in the open world, TPR is a
partial measure of accuracy, as it does not take into account Precision.

As we see in Table 1, while CUMUL and k-FP achieve similar accuracies, the
k-NN-based attack is the least accurate. Even though these results are in line
with other studies on website fingerprinting for onion services [8], we found some
discrepancies with other evaluations in the literature. For 50 sites, Hayes and
Danezis obtain over 90% accuracy with k-FP [11], and Kwon et al. obtained 97%
with k-NN [17]. However, for the same number of sites and even more instances
per site, our evaluations of k-FP and k-NN only achieve 80% maximum accuracy.
Since our results show that some sites are more fingerprintable than others, we
believe the particular choice of websites may account for this difference: we
randomly picked 50 sites from our set of 482 sites and even though Kwon et al.
also used onion URLs from ahmia.fi, they do not explain how they picked the
URLs for their evaluation.

4.2 Classifier variance

In order to determine which features cause a site to be fingerprintable, we
look into two types of sites: i) sites that are easy to fingerprint, i.e., sites
that consistently cause the least amount of errors across all classifiers; and
ii) sites that are difficult to fingerprint, namely sites that are most frequently
misclassified across all three classifiers. In the following sections, we compare

i
i

i
i

i
i

i
i

ANALYSIS OF WEBSITE CLASSIFICATION ERRORS 179

the features of these two types of sites and look for evidence that explains their
different degree of fingerprintability.

In our analysis, we evaluated the accuracy for each website in isolation and
ranked all the websites to find a threshold that divides them into the two types
described above. We found that only 10 (in kNN) to 40 (in CUMUL) sites are
perfectly classified, while the other sites have at least one misclassified instance
– some of them are consistently misclassified by all three classifiers.

Table 2: The top five onion services by number of misclassification for each
attack (repeating services in bold).

URL (.onion) TP FP FN F1

k-
N
N

4fouc. . . 4 84 66 0.05
ykrxn. . . 3 62 67 0.04
wiki5k. . . 3 77 67 0.04
ezxjj. . . 2 76 68 0.03
newsi. . . 1 87 69 0.01

C
U
M
U
L

zehli. . . 2 15 68 0.05
4ewrw. . . 2 29 68 0.04
harry. . . 2 29 68 0.04
sqtlu. . . 2 35 68 0.04
yiy4k. . . 1 14 69 0.02

k-
FP

ykrxn. . . 4 62 66 0.06
t4is3. . . 3 42 67 0.05
wiki5. . . 3 55 67 0.05
jq77m. . . 2 54 68 0.03
newsi. . . 2 63 68 0.03

We have compared the misclassifications of all three attacks to find sites that
are misclassified by all the classifiers as opposed to sites that at least one
of identified correctly. Table 2 shows the top five onion services ranked by
number of misclassifications, where we see a partial overlap of which sites are
misclassified the most. This means there is not only variation across websites
within a given classifier but also across different classifiers.

4.3 Comparison of website classification errors

Figure 2 shows a scaled Venn diagram of the classification errors. The circles
represent the errors made by each of the classifiers, and the intersections

i
i

i
i

i
i

i
i

180 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

represent the fraction of instances misclassified by the overlapping classifiers.
All numbers in the Venn diagram add to one as each number is a fraction of all
misclassifications, not a fraction of the misclassifications for a specific classifier.
This is to represent how misclassifications are distributed over classifiers and
intersections of classifiers. The black region in the center represents the
errors that are common to all three classifiers, which accounts for 31% of
all classification errors. This large intersection indicates that classification
errors for a given website are correlated and not independent for each classifier.
Note that if the errors were independent, the adversary would benefit from
employing multiple website fingerprinting classifiers; but the correlation suggests
that such gains will have limited returns.

0.26
0.07

0.08

0.08

0.15
0.05

0.31

kNN

CUMUL

kFP

Errors

Figure 2: Scaled Venn diagram of classification errors. Each circle represents
the set of prediction errors for a method: kNN, CUMUL and kFP. In the
intersections of these circles are the instances that were incorrectly classified by
the overlapping methods. 31% of the erred instances were misclassified by all
three methods, suggesting strong correlation in the errors.

The diagram in Figure 2 does not take into account whether the classifiers that
erred predicted the same mistaken label or not. In Figure 3, we depict the Venn
diagram of misclassifications according to the (erroneous) guessed label. The per-
centage of instances that were mislabeled in the same way by all three classifiers
is substantially smaller: only 2% of the errors are errors that all three classifiers
erred with the same predicted label. Interestingly, this small intersection implies
that even though these classifiers err on the same instances (Figure 3), they do
so in different ways, making different predictions for a given instance.

i
i

i
i

i
i

i
i

ANALYSIS OF WEBSITE CLASSIFICATION ERRORS 181

0.37 0.230.03

0.25

0.06 0.03

0.02

kNN
CUMUL

kFP

Errors by coinciding guess

Figure 3: Scaled Venn diagram of classifications errors by coinciding guess. The
intersections contain instances that were incorrectly classified with exactly the
same label by the overlapping classifiers. Only 2% of the errors were misclassified
to the same incorrect site by all three methods, while 85% were misclassified
differently by each method, showing that the methods do err in different ways.

4.4 Ensemble classifier

In Figure 2 we observe that more than 25% of the errors occur in only one of the
methods, and an additional 17% of errors appear in only two of the methods. A
third of the errors were misclassified by all three methods. Thus, an ensemble
classifier that appropriately combines the three classifiers can achieve higher
accuracy than any individual classifier alone, by correcting classification errors
that do not occur in all the methods.

We can estimate the maximum improvement that such an ensemble could
achieve by looking at the potential improvement of the best classifier. In our
case, CUMUL has the greatest accuracy with 874 errors that could be corrected
using kNN or kFP. So if CUMUL did not make these errors, its accuracy would
be improved by 874

33,740 = 2.6%. Even though the margin for improvement is
small, we build an ensemble to reduce the dependency of our results on a single
classifier. In addition, by choosing an ensemble we ensure that we are not
underestimating an adversary that combines all the state-of-the-art classifiers.
We therefore use the results of the ensemble to determine fingerprintability,
and compute a site’s fingerprintability score as its F1 score from the
ensemble classifier.

i
i

i
i

i
i

i
i

182 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

We analyze the overlap in errors and TPs for the three classifiers for different
ensemble methods, as follows:

Random. For each instance, randomly select one of the predictions of the
three classifiers. With this method the ensemble achieves 79.98% accuracy.

Highest confidence. For each instance, take the prediction of the classifier
with highest confidence. kFP and CUMUL use Random Forests and SVM
respectively, and both output a classification probability for each of the possible
classes. For kNN we use the distance to the nearest neighbor as the confidence
metric. The accuracy was 80.91% using this method.

P1 − P2 Diff. For each instance, use the output of the classifier with the
greatest difference in confidence between its first and second predictions. We
obtained 80.91% accuracy with this method.

C
U

M
U

L
kF

P
kN

N
E

nsem
ble

0.00 0.25 0.50 0.75 1.00

0
50

100
150

0
50

100
150

0
50

100
150

0
50

100
150

F1 Score

F
re

qu
en

cy

Figure 4: F1 score histograms for each classifier. Vertical dashed lines represent
the mean F1 score.

We decided to use the P1 − P2 Diff for the rest of our analysis because it uses
most information about the confidence vector. Figure 4 shows the F1 score
histograms for all classifiers including the ensemble. The vertical dashed lines
show the mean F1-scores. We note that the ensemble is only marginally better
than CUMUL. The main visible difference is in the relative weights of the
second and third highest bars: the ensemble improves the F1 score for a subset
of instances that in CUMUL contribute to the third bar, and to the second in
the ensemble.

In the histograms we can once more see the accuracy variation across sites
(horizontally) and across classifiers (vertically). Even though for CUMUL and
the ensemble most of the sites have high F1 scores, we see there still are several

i
i

i
i

i
i

i
i

ANALYSIS OF WEBSITE CLASSIFICATION ERRORS 183

sites in the low ranges of F1 scores that even CUMUL and ensemble cannot
perfectly fingerprint (the ones shown in Table 2).

4.5 Sources of classification error

In order to gain insight about the nature of the classifier errors, we performed
an exploratory analysis specific to the features of the erred instances. We use
the total incoming packet size as example for illustrating the analysis, because,
as we show in the following sections, it is the most salient feature. However,
this analysis can as well be applied to any other feature.

Figure 5: Median of total incoming packet size for misclassified instances (true
vs predicted site). We also plot the dashed diagonal line, y = x, for comparison.
We chose the total incoming packet size for this analysis because it is the most
distinguishing feature (see Section 5).

In Figure 5, each point represents a misclassified instance, with the x axis value
being the median incoming packet size of the ‘true site’ (site the instance truly
belongs to), and the y axis value being the median incoming packet size of
the ‘predicted site’ (according to the ensemble classifier). Note that the total
incoming packet sizes have been normalized to the interval [0, 1] using Min-Max
normalization across all instances. For visualization purposes, we have clipped
the range to focus on the region where approximately 80% of the data points
are (101 points were excluded).

Figure 5 shows that the median incoming packet sizes of the predicted and
true sites are highly correlated: most of the instances are close to the diagonal
y = x (dashed line), meaning that for most of the errors, true and predicted

i
i

i
i

i
i

i
i

184 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

sites are similar to each other in terms of median incoming packet size. In fact,
since the median incoming packet size approximates to the median total size of
the page, this shows that most of the misclassified pages were confused with
pages of similar size. Furthermore, as shown by the histograms most of the
misclassifications occur on pages of small sizes, confirming the hypothesis that
large pages are easier to identify.

We also measure the deviation of each instance from its class mean. We use Z-
score, which indicates the number of standard deviations a sample is away from
the mean. The Z-score is a standard statistic that normalizes the deviation from
the mean using the class’ standard deviation. Unlike the standard deviation,
this allows to compare Z-scores between classes with standard deviations that
differ by orders of magnitude. This property is suited to our case because the
sites in our set have large differences in terms of the total incoming packet sizes.

On the left side of Figure 6 we plot the density for the deviation from the
median for the total incoming packet size feature. Z-score values around
the origin correspond to low-deviation, whereas values far from the origin
correspond to high-deviation. We observe that the correctly classified instances
are more concentrated in the center, while the misclassified instances are more
concentrated in the extremes. This confirms that the instances with higher
deviation from their class mean are more likely to be misclassified.

The right subfigure in Figure 6 shows the number of correctly and erroneously
classified instances for the 1, 755 outliers found in our dataset. We used the
Tukey’s method for outlier removal based on the inter-quartile range and the
first and third quartiles to identify outliers. The bar plot shows that an outlier
is three times more likely to be misclassified (1, 327) than correctly classified
(428). An instance is counted as misclassified if it is misclassified by at least
one of the classifiers.

Figure 6 suggests that variation within a class such as that produced by web
page dynamism can be beneficial to induce confusions with other pages.

4.6 Confusion graph

Confusion matrices have been used in prior website fingerprinting literature
to visualize and help understand the nature of confusions [11, 21]. However,
for a multi-class problem of size 482, the confusion matrix is too large for any
visualization to be useful. This can be addressed by using confusion graphs
instead, which represent misclassifications as a directed graph [29].

i
i

i
i

i
i

i
i

ANALYSIS OF WEBSITE CLASSIFICATION ERRORS 185

0.0

0.2

0.4

0.6

−4 −2 0 2 4
Z−score

D
en

si
ty

Correctly classified Misclassified

0

500

1000

Correctly classified Misclassified
Outlier classification

C
ou

nt

Figure 6: Density plot for absolute value of Z-score distribution of total incoming
packet size. Correctly classified (dark gray) and misclassified (light gray)
instances are plotted separately to contrast them with respect to their deviation
from the class mean.

To better understand the nature of classification errors we draw a directed
graph where nodes represent classes (onion services) and edges represent
misclassifications. Source and target nodes of an edge represent true and
predicted sites, respectively. The edge weight encodes the misclassification
frequency (i.e., number of times the source class is misclassified as the target
class). We have created a confusion graph for CUMUL, which is the best
performing classifier in our dataset, shown in Figure 10 in the Appendix.

The nodes are colored based on the community they belong to, which is
determined by the Louvain community detection algorithm [3], as implemented
in the Gephi graph software. Node size is drawn proportional to the node
degree. We observe highly connected communities on the top left, and the right
which suggests clusters of onion services which are commonly confused as each
other. Further, we notice several node pairs that are commonly classified as
each other, forming ellipses.

The mean outdegree and indegree of the graph is 4.9, meaning that, on average,
a site is misclassified as 5 distinct sites and confused with 5 distinct sites. The
onion service with the maximum outdegree had 42 outgoing edges, meaning
it is misclassified as 42 distinct sites. The onion service with the maximum
indegree had 28 incoming edges, meaning it is confused with as many different
sites. Interestingly, the same onion service has zero outdegree, i.e., its instances
are never misclassified as belonging to another site.

We have looked into the size of the sites for each community in the graph.
The sites in the dark green community at the bottom of the graph are all of

i
i

i
i

i
i

i
i

186 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

similar size and significantly larger than all the others, explaining why they are
confused between each other and clustered into a community. For the other
communities, however, it is not obvious which common features define the
community. Further, we discovered that a few of the pairs of sites that form
ellipses are false negatives of our duplicates detection in the data cleansing step,
while the others require further analysis. We leave a more detailed graph-based
analysis of these communities for future work.

We analyze three cases of the symmetry of classifications:

• Symmetrical: Site A is misclassified as other sites and other sites are
misclassified as Site A.

• Asymmetrical: One or more sites are misclassified as Site A, but A is
consistently classified as A.

• Asymmetrical: Site A is misclassified as one or more other sites, but other
sites are rarely misclassified as A.

For each distinct misclassification pair (A → B) we check whether there is a
symmetric misclassification (B → A). The total number of misclassifications
with symmetric counterparts:

• CUMUL: 74.8% (4868/6502)

• kFP: 73,4% (5517/7519)

• kNN: 80.6% (8174/10132)

The results show the majority of the misclassifications are symmetrical, meaning
that there are sets of pages that provide cover for each other, effectively forming
anonymity sets . This suggests that onion services may benefit from designing
their site to have features that enable them to join one of those sets.

5 Network-level feature analysis

We use classifier-independent feature analysis methods to determine which
features are better predictors for website fingerprinting. Knowing which
features are more distinct across classes and less distinct within a class helps us
understand which features are important to each website fingerprinting method.

i
i

i
i

i
i

i
i

NETWORK-LEVEL FEATURE ANALYSIS 187

5.1 Methodology

To analyze the nature of the classification errors we borrow two concepts from
the field of machine learning: inter- and intra-class (or cluster) variance. In
particular, we use these concepts in the following sense:

The intra-class variance of a feature is defined as the variance of its
distribution for a certain class, in this case a site. It quantifies how much
the feature varies among instances of the class. In website fingerprinting, low
intra-class variance indicates a feature remains stable across different visits to
the same page.

Inter-class variance is a measure of how much a feature varies across different
classes. We define it as the variance of the averages of the feature for each class.
That is, we create a vector where each coordinate aggregates the instances
of visits to a site by averaging their feature values. Then, we calculate the
inter-class variance as the variance of that vector. In website fingerprinting,
high-inter-class variance means that websites are very distinct from each other
with respect to that feature.

In Section 4 we have shown evidence that both inter- and intra-class variance
play a role as the cause of classification errors: misclassified pages have similar
sizes to the pages they are confused with, and slightly larger variance in size than
correctly classified ones. To rank features by taking into account both intra- and
inter-class variance, we use the relative difference between the inter- and intra-
class variance, where we define relative difference as: d(x, y) = (x−y)/((x+y)/2).
This formula normalizes the differences by their mean to values between 0 and 2,
where features with a relative difference close to 0 are similar and features with
a relative difference close to 2 are far apart. This allows features of different
scales to be compared. We consider features that are close to 2 better predictors,
as they have a relatively higher inter-class variance than intra-class variance.

Many of the features that appear as most predictive for the considered classifiers
are directly related to the size of a site (e.g., the number of packets). Further,
the misclassifications described in Section 4 show that the smaller sites are more
likely to be misclassified. In addition to running feature analysis on the entire
dataset, we also look only at the small sites to determine which other features
have predictive value.

We start with an analysis of the network-level features used by the three
fingerprinting attacks detailed in Section 2 and analyzed in Section 4. Most
traditional applications of feature analysis aim to reduce the dimensionality of
the data to more efficiently classify instances. Instead, the goal of our feature
analysis is to determine which features can be modified to trick a classifier into

i
i

i
i

i
i

i
i

188 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

misclassifying an instance. Unlike many adversarial machine learning problems
with the same goal, this analysis lacks knowledge of the specific classifier (or
even the classification algorithm) used for fingerprinting, as there are many
different classifiers in the literature to consider, and the site should ideally be
hard to classify for all of them. In addition to the wide variety of classification
techniques available in the current literature, novel classification techniques
could be easily developed by an adversary.

Therefore, the network-level feature analysis we present here is classifier-
independent. That is, we use only information about the feature values
themselves and do not use classification methods to determine the importance
of the features. Figure 7 shows the relationship between how likely a site is to
be fingerprinted vs its size. All of the larger sites have high fingerprintability
scores, while the scores of smaller sites are much more varied.

Figure 7: Larger sites are easily fingerprinted while results are mixed for smaller
sites. Note also the vertical clusters of sites with low fingerprintability that are
similar in size. Incoming packet size (in bytes) is plotted in log scale.

In a website fingerprinting attack, only features based on the traffic traces are
available to the adversary. Each attack uses a distinct set of features derived
from these traces and as a result the exact feature analysis varies.

This analysis is classifier independent, meaning no classification techniques were
performed on the dataset prior to this analysis and the results do not rely on any
specific classification algorithm or task. We cannot, however, perform any feature
analysis that is completely independent from the website fingerprinting methods,
as the types of features we analyze rely on the features chosen by each method.
For each attack, however, we can determine which features are most predictive.

i
i

i
i

i
i

i
i

NETWORK-LEVEL FEATURE ANALYSIS 189

5.2 Network-level feature results

Here we analyze which network-level features are the best predictors in state-of-
the-art website fingerprinting attacks.

CUMUL

The first group of features we consider come from the CUMUL attack. There
are two types of features used in CUMUL: direct size features (Table 3) and
interpolated features. The interpolated features are formed by the number
of bytes and packets in each direction and 100 interpolation points of the
cumulative sum of packet lengths (with direction). We calculate the inter and
intra-class variance for each of these features. The direct size features are the
most important to classification (Table 3). We found that the interpolated
features are more predictive at the end of the trace than the beginning, with
the minimum relative difference (0.37) being from the very first interpolated
feature and then increasing to the greatest relative difference (1.51) being the
last interpolated feature from the very end of the trace.

Table 3: Network-level feature variance analysis for the CUMUL method. These
features had a higher relative difference than most of the interpolated features
and alone are great predictors.

Feature Name Relative Diff
Total Size of all Outgoing Packets 1.605
Total Size of Incoming Packets 1.520
Number of Incoming Packets 1.525
Number of Outgoing Packets 1.500

k-fingerprinting

The next group of features we look at come from the k-fingerprinting attack.
The features used in the k-fingerprinting attack are more varied as well as more
straightforward than those in CUMUL. They include not only features that
give information about the size and number of packets, but also the timing of
the packets. The features with the highest inter-class to intra-class variance
ratio are shown in Table 4.

The feature analysis we present here is similar to the original analysis presented
with the method by the authors, but without the use of any classification

i
i

i
i

i
i

i
i

190 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

technique. Further, we also look at which features are more predictive for small
sites, as we see that misclassifications are much more common for smaller sites.

Table 4 shows that features correlated to the total size of a site (e.g. # of
outgoing packets) have the highest relative difference and thus are among the
top features. This result is consistent with the analysis done by Hayes and
Danezis [11] on the same set of features.

When only smaller sites are analyzed however, standard deviation features
become important. In Section 4, we show that large sites are easily identified,
and the fact that size features are very predictive is not at all unexpected.
However, that standard deviation features are top features for the smaller sites
implies that the dynamism of the site makes a difference, as small dynamic sites
are generally the least fingerprintable.

Table 4: Network-level feature analysis for kFP method.

Feature name Relative Diff
All Sites
Percent incoming vs outgoing 1.895
Average concentration of packets 1.775
of outgoing packets 1.740
Sum of concentration of packets 1.740
Average order in 1.720
Smallest 10% of Sites
Percent incoming vs outgoing 1.951
Average concentration of packets 1.944
Standard deviation of order in 1.934
of packets 1.927
of packets per second 1.927

kNN

The last set of features are those of the kNN attack. Like with the other
classifiers, we find that the most important features are those that relate to the
size of the traffic flow. In this case, we find that almost all of the top predictive
features (with the highest relative difference) are related to “packet ordering” –
which in practice acts as proxy for the size of the flow.

i
i

i
i

i
i

i
i

SITE-LEVEL FEATURE ANALYSIS 191

The packet ordering feature is computed as follows: for each outgoing packet oi,
feature fi is the total count of all packets sent or received before it. Essentially,
these features measure the ordering of incoming and outgoing packets.Note that
not all sites, however, have the same number of outgoing packets. Therefore if
the end of the number of outgoing packets is less than some n (we use n = 500
to be consistent with the original implementation), the rest of the features are
filled in with zero or null values. Similarly, some sites may have over n outgoing
packets. If this is the case, the packets over the nth packet are ignored. Similar
to the features used in CUMUL, we observed that the later features in this
sequence are more important, this is because for most sites (size < n) they are
zero and thus these features are a proxy for the total size of the site.

The only other feature-type with high relative difference between inter and
intra-class variance is the number of packets (1.96), a direct measure of the size
of the site.

6 Site-level feature analysis

In website fingerprinting attacks, the adversary records the network traffic
between a user and Tor, and analyzes its features to identify the site
that was visited. Network-level features and their relative contribution to
fingerprintability are, however, not informative for onion service designers who
may want to craft their site to be robust against website fingerprinting attacks.
To gain insight into which design choices make sites vulnerable to attacks, and
how websites can be designed with increased security, we need to look at the
features at a site-level.

In this section we investigate which site-level features correlate with more and
less fingerprintable sites. Site-level features are those that can be extracted
from a web page itself, not from the traffic trace. Driven by adversarial learning,
we investigate the task of causing misclassifications for any set of network-level
features and any classification method. This information can help sites design
their web pages for low fingerprintability, and also assist in developing more
effective server-side defenses.

6.1 Methodology

Site-level features are extracted and stored by our data collection framework
as explained in Section 3. The list of all site-level features considered can be
found in Table 6 (in the Appendix).

i
i

i
i

i
i

i
i

192 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

We build a random forest regressor that classifies easy- and hard-to-fingerprint
sites, using the fingerprintability scores (the F1 scores from the ensemble
classifier described in Section 4) as labels, and considering site-level features.
We then use the fingerprintability regressor as a means to determine which
site-level features better predict fingerprintability.

In this section we aim to understand which site-level features are more prevalent
in the most and least fingerprintable sites. For the sake of this feature analysis,
we remove the middle tier of sites, defined as those with a fingerprintability
score in (0.33, 0.66). 44 sites in our dataset were assigned a mid-ranged F1-score,
leaving 438 sites for this analysis.

The next challenge is that the high and low-fingerprintability classes are un-
balanced, because of the disproportionately higher number of easily identifiable
sites compared to the amount of sites that are hard to identify. Recall that a
full 47% of sites in our dataset have a fingerprintability score greater than 95%.
A regressor trained with such unbalanced priors will be biased to always output
a prediction for of “very fingerprintable,” or values close to 1, and therefore any
analysis on the results would be meaningless. To perform the feature analysis,
we remove randomly selected instances from the set of more fingerprintable
sites, so that it is balanced in size with that of low fingerprintability.

We train a random forest regressor using the features from Table 6. We use
the feature weights from the regression to determine which of these site-level
features are most predictive of sites that are easily fingerprinted. We use the
information gain from the random forest regression to rank the importance of
the site-level features in making websites more or less fingerprintable.

While in its current state this regression is only useful for feature analysis, this
could be extended into a tool that allows sites to compute their fingerprintability
score, and be able to determine if further action is needed to protect their users
from website fingerprinting attacks.

6.2 Results

Figure 8 shows the results of the analysis. We see that features associated with
the size of the site give the highest information gain for determining finger-
printability when all the sites are considered. Among the smallest sites, which
are generally less identifiable, we see that standard deviation features are also
important, implying that sites that are more dynamic are harder to fingerprint.

Additionally, Table 5 shows how different the easy- and hard-to-fingerprint sets
of sites are in terms of total HTTP download size, a straightforward metric for

i
i

i
i

i
i

i
i

SITE-LEVEL FEATURE ANALYSIS 193

Figure 8: Most important features by information gain. Features related to the
size of a site are important.

the size of a site. The median site size for the 50 most fingerprintable sites is
almost 150 times larger than the median size of the harder to classify sites. The
standard deviation of the total site size for the most and least fingerprintable
sites, relative to their size, is similarly distinct, showing the most fingerprintable
sites are less dynamic than the 50 least fingerprintable sites. That is, they are
less likely to change between each visit.

Total HTTP Download Size 50 Most 50 Least
Median Std Dev 0.00062 0.04451

(normalized by total size)
Median Size 438110 2985

Table 5: Differences in the most and least fingerprintable sites. The 50 most
fingerprintable sites are larger and less dynamic than the 50 least fingerprintable
sites.

While the smallest sites are less fingerprintable, some are still easily identified.
Figure 9 shows the distribution of sizes considering only the smallest sites,
distinguished by whether they have a high or low fingerprintability score. We
can see that the least fingerprintable sites are clustered in fewer size values,
while the most fingerprintable are more spread, meaning that there are fewer
sites of the same size that they can be confused with.

i
i

i
i

i
i

i
i

194 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

Figure 9: Distribution of sizes for the most and least fingerprintable sites,
considering only the sites smaller than 25,000 bytes.

7 Implications for onion service design

Overall, our analysis showed that most onion services are highly vulnerable to
website fingerprinting attacks. Additionally, we found that larger sites are more
susceptible to website fingerprinting attacks. Larger sites were more likely to
be perfectly classified by all attacks while many smaller sites were able to evade
the same attacks by inducing misclassifications.

We also observed that the small sites that are harder to identify also have a high
standard deviations for many site-level and network-level features, implying
that dynamism plays a role in why these sites are less identifiable. While our
results show that small size is necessary, it is not sufficient. As a result, our
recommendation for onion service designers is “make it small and dynamic.”

Most website fingerprinting defenses rely on some form of padding, that is,
adding spurious traffic and therefore increasing the download size. Our analysis,
however, shows that this type of defense may not be robust when features such
as download size become sparse. Often, these defenses are tested against a
single attack with a single feature set and a specific classification algorithm. We
see, though, that classification errors do not always coincide for different attacks,
and argue that any website fingerprinting defense needs to be tested against a

i
i

i
i

i
i

i
i

IMPLICATIONS FOR ONION SERVICE DESIGN 195

range of state-of-the-art attacks, preferably relying on different algorithms and
feature sets, in order to provide more general guarantees of its effectiveness.

As a case study, we consider the results that our ensemble classifier achieved in
identifying SecureDrop sites. These sites are onion services that are running the
SecureDrop software, a whistleblower submission system that allows journalists
and media publishers to protect the identities of their sources. Given the
sensitive nature of the service that they provide and the nation-state adversaries
that they may realistically face, these SecureDrop sites have strong anonymity
requirements.

Our dataset contained a SecureDrop site owned by ‘Project On Gov’t Oversight’
(POGO)8. The SecureDrop site had an F1-Score of 99%, meaning that it is
much more vulnerable to website fingerprinting attacks than the average onion
service site.

There were other SecureDrop sites present in our initial dataset, associated with
The New Yorker, The Intercept and ExposeFacts. These sites were flagged as
duplicates of the POGO SecureDrop site and thus removed during the data
processing stage. Since they were identified as duplicates, all these SecureDrop
sites have very similar characteristics and can thus be expected to be identifiable
at a similarly high rates as the POGO site. In particular, we noted that these
pages embed images and use scripts and CSS styles that make them large and
therefore distinguishable.

It can be argued that the existence of various similar SecureDrop sites creates
an anonymity set and makes some sites cover up for each other. On the other
hand however, it may be enough for the adversary to ascertain that the user is
visiting a SecureDrop site for the anonymity of the source to be compromised.

We did a small, manual analysis of some of the most and least fingerprintable
sites (by F1 score) to see if there were any strong correlations with content. We
found that pages at the bottom end of the spectrum were smaller and simpler
(a hidden wiki, a listing of a directory, nginx config page, etc.) whereas the
most fingerprintable pages were larger and more complex (a bitcoin faucet site,
a forum, the weasyl art gallery site, propublica, a Russian escort service site).
Pages in the middle of the spectrum varied, but were often login pages. It
is worth pointing out that the onion services ecosystem has a 90’s, GeoCities
“look,” where pages tend to be simple HTML and sites that do not follow this
aesthetic will stand out.

8https://securedrop.pogo.org

https://securedrop.pogo.org

i
i

i
i

i
i

i
i

196 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

8 Limitations and future work

With 482 onion sites, this is the largest website fingerprinting study of onion
service sites. Even so, our results may not be representative of the entire onion
service universe. We made our best effort to collect as many onion service URLs
as possible using ahmia.fi. While there are more effective methods to collect
.onion addresses, such as setting up a snooping Hidden Service Directory [24],
they are ethically questionable.

Our data is a snapshot of the onion services space over 14 days. As the onion
services change constantly, and fingerprintability depends not just on individual
sites but the whole set, the dataset and the analysis should be updated regularly
for a diagnosis of current levels of fingerprintability.

As new website fingerprinting attacks are proposed, features that are important
to fingerprintability now may become less so, especially if defenses are introduced
or if the design of websites changes. The methods introduced in this paper
for extracting features and understanding what makes certain sites identifiable,
however, are a lasting and relevant contribution. In particular, we argue that the
effectiveness of a proposed defense should be examined not only on average, but
that it should account for possible disparate impact on different sites depending
on their features. For example, even if a defense significantly lowers the average
accuracy of a website fingerprinting attack, it could be that certain sites are
always correctly identified, and thus left unprotected by the defense. We also
point out that we focus on whether a site blends well with other sites, triggering
frequent misclassifications in the context of website fingerprinting attacks, and
that the effectiveness of using such techniques as basis for defending against web-
site fingerprinting, has dependencies on the actions taken by other onion services.

Our data collection methodology follows standard experimental practices in the
website fingerprinting literature when crawling only home pages. On the one
hand, limiting the evaluation to home pages (rather than including all inner
pages of a site) reduces the classification space and gives an advantage to the
adversary compared to considering that users may directly browse to the inner
pages of a site. We argue that a fraction of users will still first land on the
homepage of a site before visiting inner pages and thus this adversarial advantage
is not unrealistic. We also note that the link structure of inner pages in a website
can be exploited to improve the accuracy of website fingerprinting attacks.

Compared to using wget, curl or headless browsers, our Tor Browser based
crawler better impersonates a real browser, limiting the risk of differential
treatment by onion services. Still, it is possible detect the presence of Selenium
based automation using JavaScript.

i
i

i
i

i
i

i
i

LIMITATIONS AND FUTURE WORK 197

The adversary can sanitize training data by taking measures such as removing
outliers, but cannot do so for test data. Since we measure an upper bound for
the fingerprintability of websites, we sanitize the whole dataset including the
test data. Note that this is in line with the methodology employed in prior
work [21,28].

We acknowledge that redesigning a site to be small and dynamic, as suggested
best practice by our analysis, may not be an option for some sites for a variety
of reasons. This is a limitation of our approach to countermeasures, but might
be a limitation to website fingerprinting defenses in general, as large sites are
easily identified by website fingerprinting attacks. However, we believe that our
results can inform the design of application-layer defenses that alter websites in
order to perturb site-level features [8]. This would allow to optimize existing
application-layer defenses by focusing on the features that our site-level feature
analysis has identified as most identifying, thus reducing the performance that
these defenses incur in Tor.

Previous studies on website fingerprinting have shown that data collected from
regular sites get stale over time, namely, the accuracy of the attack drops if the
classifier is trained on outdated data [15]. For onion services, Kwon et al. did a
similar experiment and showed that onion services change at a lower rate than
regular sites and do not get stale as quick [17]. For this reason, in this paper,
we assume the adversary can keep an updated database of templates.

Reducing the accuracy of website fingerprinting attacks can be framed as an
adversarial learning problem. A webpage can be redesigned to modify its site-
level features (especially those that contribute the most to fingerprintability) to
trick the classifier into making a misclassification. In future work we plan to
tackle finding efficient ways to altering these website features to launch poisoning
attacks against website fingerprinting classifiers [14] under constraints such as
bandwidth, latency and availability.

Finally, we acknowledge that the random forest regression method to determine
the fingerprintability of a webpage given only web-level features is currently
useful only for feature analysis. This is due to a number of factors, such as
removing the middle of the spectrum sites and balancing the priors. Although
there are a few challenges and limitations, creating an accurate tool that can
determine if a site will be easily fingerprinted from only site-level features would
be very valuable to onion services.

i
i

i
i

i
i

i
i

198 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

9 Conclusion

Our work intends to change the way that we build and analyze website
fingerprinting attacks and defenses, and differs from previous website
fingerprinting contributions in several ways. We do not propose a new attack
algorithm (with the exception, perhaps, of the ensemble method) or an explicit
defense, but study instead what makes certain sites more or less vulnerable to
the attack. We examine which types of features, with intentional generality, are
common in sites vulnerable to website fingerprinting attacks.

This type of analysis is valuable for onion service operators and for designers of
website fingerprinting defenses. A website fingerprinting countermeasure may
have a very disparate impact on different sites, which is not apparent if only
average accuracies are taken into consideration. Further, we note that from
the perspective of an onion service provider, overall accuracies do not matter,
only whether a particular defense will protect their site and their users. Our
results can guide the designers and operators of onion services as to how to
make their own sites less easily fingerprintable, in particular considering the
results of the feature analyses and misclassifications. For example, we show
that the larger sites are reliably more identifiable, while the hardest to identify
tend to be small and dynamic.

This work is also a contribution to adversarial machine learning. Most work in ad-
versarial learning focuses on attacking a specific algorithm and feature set, but in
many privacy problems this model does not fit. Our study investigates methods
to force the misclassification of an instance regardless of the learning method.

References

[1] Users - Tor Metrics. https://metrics.torproject.org/userstats-
relay-country.html, 2017.

[2] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and
J. D. Tygar. Can machine learning be secure? In Proceedings of the 2006
ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’06, 2006.

[3] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of
statistical mechanics: theory and experiment, 2008(10):P10008, 2008.

https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html

i
i

i
i

i
i

i
i

REFERENCES 199

[4] Xiang Cai, Rishab Nithyanand, and Rob Johnson. CS-BuFLO: A congestion
sensitive website fingerprinting defense. In ACM Workshop on Privacy in
the Electronic Society (WPES), pages 121–130. ACM, 2014.

[5] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg.
A systematic approach to developing and evaluating website fingerprinting
defenses. In ACM Conference on Computer and Communications Security
(CCS), pages 227–238. ACM, 2014.

[6] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching
from a distance: Website fingerprinting attacks and defenses. In ACM
Conference on Computer and Communications Security (CCS), pages 605–
616. ACM, 2012.

[7] Heyning Cheng and Ron Avnur. Traffic analysis of ssl encrypted
web browsing. Project paper, University of Berkeley, 1998. Available
at http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/
final-reports/ronathan-heyning.ps.

[8] Giovanni Cherubin, Jamie Hayes, and Marc Juarez. "Website fingerprinting
defenses at the application layer". In Proceedings on Privacy Enhancing
Technologies (PoETS), pages 168–185. De Gruyter, 2017.

[9] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security
Symposium, pages 303–320. USENIX Security Symposium, 2004.

[10] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton.
Peek-a-Boo, I still see you: Why efficient traffic analysis countermeasures
fail. In IEEE Symposium on Security and Privacy (S&P), pages 332–346.
IEEE, 2012.

[11] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable
website fingerprinting technique. In USENIX Security Symposium, pages
1–17. USENIX Association, 2016.

[12] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website
fingerprinting: attacking popular privacy enhancing technologies with the
multinomial Naïve-Bayes classifier. In ACM Workshop on Cloud Computing
Security, pages 31–42. ACM, 2009.

[13] Andrew Hintz. Fingerprinting websites using traffic analysis. In Privacy
Enhancing Technologies Symposium (PETS), pages 171–178. Springer,
2003.

http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps

i
i

i
i

i
i

i
i

200 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

[14] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein,
and JD Tygar. Adversarial machine learning. In Proceedings of the 4th
ACM workshop on Security and artificial intelligence, pages 43–58. ACM,
2011.

[15] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel
Greenstadt. A critical evaluation of website fingerprinting attacks. In
ACM Conference on Computer and Communications Security (CCS), pages
263–274. ACM, 2014.

[16] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew
Wright. Toward an efficient website fingerprinting defense. In European
Symposium on Research in Computer Security (ESORICS), pages 27–46.
Springer, 2016.

[17] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas
Devadas. Circuit fingerprinting attacks: Passive deanonymization of tor
hidden services. In USENIX Security Symposium, pages 287–302. USENIX
Association, 2015.

[18] Sarah Jamie Lewis. OnionScan Report: Freedom Hosting II, A New Map
and a New Direction. "https://mascherari.press/onionscan-report-
fhii-a-new-map-and-the-future/", March 2017. (accessed: May, 2017).

[19] Marc Liberatore and Brian Neil Levine. "Inferring the source of
encrypted HTTP connections". In ACM Conference on Computer and
Communications Security (CCS), pages 255–263. ACM, 2006.

[20] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky K. C.
Chang, and Roberto Perdisci. HTTPOS: Sealing information leaks with
browser-side obfuscation of encrypted flows. In Network & Distributed
System Security Symposium (NDSS). IEEE Computer Society, 2011.

[21] Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan
Pennekamp, Klaus Wehrle, and Thomas Engel. Website fingerprinting
at internet scale. In Network & Distributed System Security Symposium
(NDSS), pages 1–15. IEEE Computer Society, 2016.

[22] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.
Website fingerprinting in onion routing based anonymization networks.
In ACM Workshop on Privacy in the Electronic Society (WPES), pages
103–114. ACM, 2011.

[23] Mike Perry. Experimental defense for website traffic fingerprinting.
Tor Project Blog. https://blog.torproject.org/blog/experimental-
defense-website-traffic-fingerprinting, 2011. (accessed: October
10, 2013).

https://mascherari.press/onionscan-report-fhii-a-new-map-and-the-future/
https://mascherari.press/onionscan-report-fhii-a-new-map-and-the-future/
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting

i
i

i
i

i
i

i
i

REFERENCES 201

[24] Amirali Sanatinia and Guevara Noubir. HOnions: Towards Detection and
Identification of Misbehaving Tor HSdirs. In Workshop on Hot Topics in
Privacy Enhancing Technologies (HotPETs), 2016.

[25] Qixiang Sun, Daniel R Simon, Yi-Min Wang, Wilf Russel, Venkata N.
Padmanabhan, and Lili Qiu. Statistical identification of encrypted web
browsing traffic. In IEEE Symposium on Security and Privacy (S&P),
pages 19–30. IEEE, 2002.

[26] Tao Wang. Website Fingerprinting: Attacks and Defenses. PhD thesis,
University of Waterloo, 2016.

[27] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg.
Effective attacks and provable defenses for website fingerprinting. In
USENIX Security Symposium, pages 143–157. USENIX Association, 2014.

[28] Tao Wang and Ian Goldberg. Improved Website Fingerprinting on Tor.
In ACM Workshop on Privacy in the Electronic Society (WPES), pages
201–212. ACM, 2013.

[29] Davis Yoshida and Jordan Boyd-Graber. Using confusion graphs to
understand classifier error. In Proceedings of the Workshop on Human-
Computer Question Answering, pages 48–52, 2016.

i
i

i
i

i
i

i
i

202 HOW UNIQUE IS YOUR ONION? AN ANALYSIS OF THE FINGERPRINTABILITY OF TOR ONION
SERVICES

A Appendices

A.1 Site level features

Table 6 shows the site-level features and statistic used to aggregate each site-level
features within a site class. We followed the feature extraction step outlined
in Section 3 to obtain the site-level features. Here we present a more detailed
overview of feature extraction for different site-level feature families.

Table 6: Site-level features and statistics used to aggregate them across download
instances. Nominal and binary features such as Made with Wordpress are
aggregated by taking the most frequent value (i.e. mode) of the instances.
Quantitative features such as Page load time are aggregated using median, as
is is less sensitive to outliers than the statistical mean.

Feature Median Mode Description
Number of HTTP requests Number of HTTP requests stored by the browser add-on
Number of HTTP responses Number of HTTP responses stored by the browser add-on
Has advertisement HTTP request matching EasyList 9

Has tracking/analytics HTTP request matching EasyPrivacy 10

HTML source size Size (in bytes) of the page source
Page load time As determined by Selenium
Made with Django As determined by generator HTML meta tag
Made with Dokuwiki As determined by generator HTML meta tag
Made with Drupal As determined by generator HTML meta tag
Made with Joomla As determined by generator HTML meta tag
Made with MediaWiki As determined by generator HTML meta tag
Made with OnionMail As determined by generator HTML meta tag
Made with phpSQLiteCMS As determined by generator HTML meta tag
Made with vBulletin As determined by generator HTML meta tag
Made with WooCommerce As determined by generator HTML meta tag
Made with Wordpress As determined by generator HTML meta tag
Made with CMS True if any of the “Made with...” features above is true
Number of audio As determined by the Content-Type HTTP response header
Number of domains As determined by the Content-Type HTTP response header
Number of redirections As determined by the presence of Location HTTP response header
Number of empty content Number of HTTP responses with Content-Length equal to zero
Number of fonts As determined by the Content-Type HTTP response header
Number of HTML resources As determined by the Content-Type HTTP response header
Number of images As determined by the Content-Type HTTP response header
Number of other content As determined by the Content-Type HTTP response header
Number of scripts As determined by the Content-Type HTTP response header
Number of stylesheets As determined by the Content-Type HTTP response header
Number of videos As determined by the Content-Type HTTP response header
Number of waterfall phases Approximate number of HTTP waterfall chart phases as determined

by switches from request to response or response to request.
Screenshot size Size (in bytes) of the screenshot saved by Selenium
Page weight Sum of the HTTP response sizes (in bytes)
Total request size Sum of the HTTP request sizes (in bytes)

9 https://easylist.to/easylist/easylist.txt
10 https://easylist.to/easylist/easyprivacy.txt

https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt

i
i

i
i

i
i

i
i

APPENDICES 203

A.2 Confusion Graph for CUMUL

Figure 10: Confusion graph for the CUMUL classifier drawn by Gephi software
using the methodology explained in Section 4.6. Nodes are colored based on
the community they belong to, which is determined by the Louvain community
detection algorithm [3]. Node size is drawn proportional to the node degree,
that is, bigger node means lower classification accuracy. We observe highly
connected communities on the top left, and the right which suggests clusters of
onion services which are commonly confused as each other. Further, we notice
several node pairs that are commonly classified as each other, forming ellipses.

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Publication

Inside Job: Applying Traffic
Analysis to Measure Tor from
Within

Publication Data

Jansen, R., Juarez, M., Galvez, R., Elahi, T., and Diaz, C.
Inside job: Applying traffic analysis to measure tor from within. In
Network & Distributed System Security Symposium (NDSS) (2018),
Internet Society

Contributions

• Principal author. First and second authors contributed equally.

205

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Inside Job: Applying Traffic Analysis to Measure
Tor from Within

Rob Jansen1, Marc Juarez2, Rafa Gálvez2, Tariq Elahi2, and Claudia Diaz2

1 U.S. Naval Research Laboratory
2 imec-COSIC KU Leuven

Abstract. In this paper, we explore traffic analysis attacks on Tor
that are conducted solely with middle relays rather than with relays
from the entry or exit positions. We create a methodology to apply
novel Tor circuit and website fingerprinting from middle relays to
detect onion service usage; that is, we are able to identify websites
with hidden network addresses by their traffic patterns. We also
carry out the first privacy-preserving popularity measurement of
a single social networking website hosted as an onion service by
deploying our novel circuit and website fingerprinting techniques
in the wild. Our results show: (i) that the middle position
enables wide-scale monitoring and measurement not possible from
a comparable resource deployment in other relay positions, (ii) that
traffic fingerprinting techniques are as effective from the middle
relay position as prior works show from a guard relay, and (iii) that
an adversary can use our fingerprinting methodology to discover
the popularity of onion services, or as a filter to target specific
nodes in the network, such as particular guard relays.

1 Introduction

Tor [8] network entry and exit points have received considerable focus over
the years through continuous research activity because the entry and exit
points directly connect to the end-user and destination, respectively. However,
potential threats from middle relay positions have received far less attention.
We believe that this is because there is a common misconception that malicious
or compromised middle relays are not a significant threat to end-users’ privacy
since they do not directly connect to either the end-user or the destination
and thus are unable to link both parties together. While middle relays are
not privy to the network addresses of the client and destination, they can still
passively yet directly observe a plethora of other information including service

207

i
i

i
i

i
i

i
i

208 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

access times, transfer volumes and data flow directions, and the preceding and
succeeding relays chosen for connections. This information leakage could be
analyzed to discover client usage and network patterns in the Tor network and
thus yield potential attack vectors, and we believe that such threats present a
wide gamut of possible avenues for research.

In this work we focus on the novel application of different traffic analysis
techniques such as circuit fingerprinting [22] and website fingerprinting (WF) [4,
14,26,28–30] performed from middle relays as opposed to the usual guard relays.
We design the first circuit and website fingerprinting algorithms specifically for
use at middle relays, and we are the first to apply machine learning to detect from
which of many possible circuit positions a relay is serving. Using our novel circuit
purpose, relay position, and website fingerprinting algorithms, we produce a clas-
sification pipeline (i.e.,, a python library) that can identify which onion service
websites accessible through the Tor network are visited by Tor users. In selecting
this specific scope we are keen to focus on sensitive usages of Tor (i.e.,, onion
services) where assumption failures may lead to high-stakes consequences. We
are also specific enough to yield a concrete methodology, tangible code, and data
artifacts, as well as empirical results that were thoroughly analyzed with well
understood limitations. We provide our viable framework of tools3 so that future
work may use them as foundations for the study of attacks and their mitigation.

In the interest of real-world applicability, we deploy our classification pipeline in
the first real-world measurement study using WF with real Tor users. For the
sake of ethical research and limiting the impact on user privacy, our pipeline is
augmented with PrivCount [19], a privacy-preserving statistics collection suite
designed to provide differentially-private [9] results, hiding individual user activ-
ity. We use PrivCount to measure onion services while focusing on the popularity
of only a single well-known social networking platform (SNS) to further limit the
impact on user privacy: the site we measure is accessible through a single-hop
onion service indicating that the service itself does not require anonymity. Our
measurement not only yields useful information about this particular onion
service, but it also serves as a proof-of-concept that our classification pipeline
can be used at middle relays as a vector for information leakage. We note
that while we as ethical researchers are constrained by the differentially-private
(i.e.,, noisy) results, a malicious actor is not and would be able to produce
measurements of higher accuracy. Therefore, our results represent a lower bound
on the information leakage potential of WF at middle relays.

We highlight that in this work we treat website fingerprinting techniques as
general tools to identify websites. In contrast, previous work on Tor website
fingerprinting assumes a malicious guard relay or a monitored node on the

3https://github.com/onionpop

https://github.com/onionpop

i
i

i
i

i
i

i
i

BACKGROUND 209

client-to-guard network path; under this previous model, it is assumed that an
adversary already knows or can easily discover a target client’s IP address and
all that remains in order to mount a linking attack is to identify the website that
the client visits. In that setting it constitutes an attack to merely perform WF
successfully, whereas in this work we use WF to detect revealing information
about the Tor network and its usage. One could then leverage that information,
e.g.,, to perform wide-scale monitoring of onion site usage or to mount an attack
linking client to destination (see subsection 9.2).

Our results include: (i) our circuit purpose and relay position classifiers achieve
92.41%±0.07 and 98.48%±0.01 accuracy respectively; (ii) our WF at the middle
classifier achieves more than 60% accuracy for a closed world of 1,000 onion
services, which is competitive with classical WF applications; (iii) our one-class
classifier for real-world deployment is bounded to 0.6% false positive rate at a cost
of decreasing the true positive rate to 40%; and (iv) our real-world deployment
shows that the social networking website’s onion service accounts for 0.52% of all
onion service circuits created. These results are compelling and provide evidence
that WF is viable at the middle relay position, that we can effectively target
onion service traffic, and that real-world deployments can yield actionable results.

We make the following contributions in this paper:

1. we design the first classifier to detect relay position, and the first classifier
to detect circuit purpose from a middle relay position using a novel feature
set that utilizes internal Tor protocol meta-data;

2. we are the first to show that traffic fingerprinting techniques are effective
from a middle relay position for both closed-world and one-class open-
world problems;

3. we produce a classification pipeline that combines circuit purpose, relay
position, and WF classifiers for real-world deployment; and

4. we perform the first measurement study that applies traffic fingerprinting
to discover Tor onion service popularity, done ethically with privacy-
preserving statistics collection methods.

2 Background

2.1 Tor

Clients use Tor by first telescoping a long-lived circuit through a series of three
volunteer relays: the client chooses a persistent entry guard relay as its first

i
i

i
i

i
i

i
i

210 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

relay (using this same guard for three months before rotating to a new one),
chooses a new random middle relay, and chooses a last exit relay that will
allow it to connect to the intended Internet service external to the Tor network.
The relays forward traffic in both directions through the circuit to facilitate
communication between the client and its communicating peer.

Tor’s popularity is partly due to the flexibility provided by its design: the
external peer need not run Tor or even be aware that the client is connecting
through the Tor network. However, clients who connect to external peers must
still rely on the existing DNS and SSL/TLS certificate authentication systems,
and the external peers themselves are not anonymous. To mitigate these issues,
Tor also develops and maintains an onion service protocol, a communication
mode in which both the user and its peer run Tor and build circuits that are
connected together. All communication is internal to the Tor network, and
therefore the user and its peer both enjoy anonymity and end-to-end encryption
without relying on external insecure name and certificate authentication systems.

2.2 Onion Service protocol

The protocol that Tor clients and onion services use to establish a connection is
as follows. In order to advertise themselves and be reachable by clients, onion
services maintain a few long-term circuits that last at least one hour. Relays
at the end of these long-term circuits play the role of Introduction Points (IP).
The addresses of IPs along with other onion service information such as their
public keys are stored as descriptors in a distributed database formed by Tor
relays that have been assigned the HSDir flag. To create an IP circuit, the onion
service must create a regular three-hop circuit and send an establish_intro
cell to the last relay. The last relay replies with an intro_established cell if
it agrees to act as the IP on this circuit.

To establish a connection with the onion service, the client first selects a middle
relay to serve as a Rendezvous Point (RP) and builds a circuit ending at that
relay. The client then sends an establish_rendezvous cell to the RP which
replies with a redezvous_established cell. The client must then inform the
onion service of this RP using the service’s IP. To learn the IP, the client builds
a circuit to an HSDir, sends the service’s .onion address that was communicated
out-of-band, and receives the onion service’s descriptor (including the addresses
of the service’s current IPs). The client then builds a circuit to one of the IPs
and sends it an introduce cell which contains the RP’s address and a one-time
secret, all encrypted with the onion service’s public key. The IP relays the cell to
the onion service which acknowledges the receipt by sending a introduce_ack
back to the client.

i
i

i
i

i
i

i
i

BACKGROUND 211

The onion service decrypts the RP address, builds a circuit to it, and sends
it a rendezvous cell that contains the one-time secret provided by the client
for authentication. The RP relays this cell to the client who will verify the
one-time secret and acknowledge receipt to the onion service. At this point, a
six-hop circuit exists between the client and the onion service and can be used
for application communication. Figure 1 depicts the four main types of circuits
that have been created (excluding the HSDir circuit): an onion service to IP,
a client to IP, a client to RP and an onion service to RP. Note that the circuits
created for this process are dedicated to the onion service protocol and cannot
be reused for other communications.

Figure 1: Circuits built and relays used during an onion service connection.
The I-S-M2 relay serves as the introduction point, and the R-C-M2 relay serves
as the rendezvous point.

2.3 Stream isolation

Applications tunnel peer connections, called streams, through Tor circuits. The
Tor software decides if a new stream should be assigned to an existing used
circuit, an existing unused circuit, or if a new circuit should be built to handle
the stream. Tor would like to provide unlinkability of unrelated traffic in order to
reduce the exposure to honest-but-curious exit nodes that may track unrelated
visits by the same user. However, completely isolating each stream to its own
circuit would significantly degrade Tor’s performance while allowing malicious
servers to cause a client to create an arbitrary number of circuits, which would
increase the probability that a client selects a compromised node for at least
one of them. For this reason, Tor prefers to isolate groups of streams to their
own circuit. In TorBrowser, a hardened fork of Firefox and the recommended
web browser to use with Tor, streams are grouped by the first-party domain
that appears in the URL bar (across different tabs). This means that almost
all streams generated during a page download will go through the same circuit,
including requests to third parties. Note that, although unlikely, Tor may create
a new circuit while fetching a web page; for example, a restrictive exit policy of a
circuit may cause Tor to create a new circuit with an exit that supports the fetch
of a particular resource (e.g.,, transitions from HTTP to HTTPS and vice versa).

i
i

i
i

i
i

i
i

212 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

However, the rules for handling onion service traffic are different. Since onion
service circuits do not exit the Tor network and require that a Rendezvous Point
is agreed upon between the client and the onion service, there is currently no
stream grouping by the first-party domain of the onion URL in the address
bar. Therefore, a user visiting an onion service with mixed first-party onion
service and third-party onion or non-onion service content may create multiple
circuits to fetch the content; it will create a circuit to fetch all of the first party
content, a circuit to fetch all non-onion service third party content (even if each
third party is served from a different domain), and a circuit for each third-party
embedded resource hosted from a unique onion service.

These peculiarities of the onion service protocol limit the visibility of an adversary
monitoring the traffic at the middle: while an adversary at the entry or client-
to-entry link is able to capture all the traffic that a user generates during a visit
to an onion service, the adversary we consider would only be able to record the
traffic for the first-party content.

2.4 Traffic fingerprinting

The traffic analysis techniques that we study in this paper are based on
applying supervised learning methods on the encrypted and anonymized traffic
traces that are captured from middle relays we control. We study traffic
fingerprinting attacks such as circuit and website fingerprinting that use side-
channel information leaking from encrypted network packet timing and lengths
to discover patterns in the communication. In particular, circuit fingerprinting
allows an attacker to distinguish between visits to onion services from regular
sites and website fingerprinting enables one to identify the website being accessed.
To the best of our knowledge, all previous website fingerprinting studies in Tor
have been conducted either at the entry guard or somewhere on the network
path between the client and the guard.

Most studies evaluate WF in a closed world model in which it is assumed that the
classifier could be trained on data for all of the sites that the user was possibly
going to visit. This assumption is unrealistic because there are potentially
billions of websites and the resources necessary to collect, store, and process
the data for all such sites would be overwhelming. A more realistic evaluation
method uses an open world model in which only a small fraction of the sites
are available to the adversary for training. However, the closed world has been
considered a realistic scenario if the adversary aims at detecting only onion
services [6]. It has been shown that a local and passive adversary can effectively
first detect onion service visits using circuit fingerprinting, and then apply
website fingerprinting methods to infer to which website they belong [22,27].

i
i

i
i

i
i

i
i

REQUIREMENTS AND ETHICAL RESEARCH 213

In this paper, we evaluate the effectiveness of traffic fingerprinting from Tor
middle relays under both open and closed world models while focusing on onion
services. WF is particularly threatening for onion services for two reasons [6,25]:
(i) there are fewer onion services than regular sites and, since the adversary
can filter out visits to regular sites, it needs less resources to fingerprint onion
services effectively; and (ii) onion services hide their location on the network so
that it is difficult to censor them and may host sensitive content, and therefore
visitors of those sites are especially vulnerable if the WF attack is successful.

3 Requirements and ethical research

We now describe the capabilities required to fingerprint onion service websites
from the middle relay position and discuss ethical considerations.

3.1 Requirements

To apply the techniques described in the following sections, we do not depend
on the ability to break the encryption of Tor but do depend on the ability to
eavesdrop on all network traffic to and from relays we control. We can obtain a
traffic trace or sample of both the encrypted network packets and the Tor protocol
messages (i.e.,, cells). We are able to observe, decrypt, and read the headers and
payloads of Tor cells that are destined for the middle relays we control, but we
can only observe and read the headers of cells intended for another destination
and forwarded through our relay (the payloads of such cells are encrypted).

We also need to deploy at least one middle relay that contributes bandwidth to
Tor. Our attacks become more statistically sound as we observe more circuits,
and the fraction of circuits that we will observe roughly correlates with the
amount of bandwidth that we contribute. Note that it is quite affordable to run
Tor relays in dedicated servers or as virtual instances on the various low-cost
cloud platforms available.

Furthermore, we only require local visibility of the network because we can
only observe circuits from clients that pick our relays and cannot observe other
activity. Figure 2 depicts the position of the relay from which we perform the
website fingerprinting that is the focus of this paper.

We desire to be able to utilize the machine learning techniques we propose on
common desktop hardware. This means that along with the ability to collect
data (described in more detail in subsection 6.4), we can also perform the

i
i

i
i

i
i

i
i

214 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

Figure 2: The adversary runs a middle relay and monitors the Tor messages
that it relays. The adversary will observe circuits carrying traffic for onion
services internal to Tor and regular web servers external to Tor.

pre-processing and data cleansing, the training, and finally the classification
tasks all on hardware commonly found on desktop computers of today.

3.2 Ethical Considerations

We have contacted the Tor Research Safety Board4 for advice on the ethical
implications of this research and have followed their recommendations. We also
contacted the SNS that we have taken as use case for this study for responsible
disclosure but did not receive any response from them. Since we investigate a
number of settings with varying levels of risk for real users, we provide additional
details about ethical research throughout the paper.

4 Advantages of the middle of the path

In this section, we discuss the benefits of running middle relays to analyze onion
service traffic as compared to relays that are at the ingress and egress points of
the network.

4.1 Exit

Exit relays make connections outside of the Tor network, and an exit relay will
never be chosen by Tor’s default path selection algorithm in non-exit positions
or in onion service positions due to exit relay bandwidth scarcity. An exit
relay will thus not be useful for our purposes, given that it will not route any
onion-service visit.

4https://research.torproject.org/safetyboard.html

https://research.torproject.org/safetyboard.html

i
i

i
i

i
i

i
i

ADVANTAGES OF THE MIDDLE OF THE PATH 215

4.2 Guard

Each client chooses a relay from the set of all relays with the guard flag and
uses it as its first hop entry into the Tor network for all circuits it builds. A
guard relay may serve in both the first-hop guard position and in the middle
relay positions, and its bandwidth is split among these two positions. In order
to be eligible to serve as a guard, a relay is required to be stable and have high
up-time relative to other relays. Additionally, a guard relay will not be fully
utilized when it first becomes a guard, because clients only drop their current
guard and rotate to new ones after two to three months (there exists a proposal
to increase this time to nine months [7]). As a result, it will take several months
to reach steady state, and during that time the relay will observe less traffic
than in other positions. A guard will observe many circuits, including onion
service circuits, from a smaller slowly churning set of clients.

4.3 Middle

A middle relay can be used for any circuit, and may potentially observe the
traffic of any Tor user in the network, given that enough circuits are made over
time. This is in contrast to guard relays that can only observe the traffic of
users that have picked them as their first hop.

We are particularly interested in regularly visited onion services. The following
equation shows that the probability of a particular middle relay observing a
client’s circuit increases as the client builds more and more circuits over time,
where l is the likelihood of picking that middle for a single circuit and c is the
number of circuits that the client has made so far.

P (observed) = 1− (1− l)c

We investigate how the frequency of visits to an onion site, f = c
t where f

is the fraction of the number of visits c in a given unit of time t, affects the
probability of being observed by a middle relay. Let’s assume that a user visits
onion services just once every unit of time, for instance once per day. From the
line labeled f = 1 in the left plot of Figure 3 we see that this client will have an
almost 80% chance of making at least one circuit through the malicious middle
relay after 1,000 days, or two years and nine months. In contrast, a user that
visits onion services ten times per day has the same chances in just a little over
three months. As point of reference a similarly provisioned guard relay, shown
as the rightmost line labeled f = 10, guard, reaches similar levels of probability
only after two orders of magnitude of time later, 10,000 days.

i
i

i
i

i
i

i
i

216 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

103 106

0.5

1
f = 10

f = 3
f = 1

f = 10, guard

Time (t)

P
(o
bs
er
v
ed

)

103 106

0.5

1
f = 1

f = 3
f = 10

f = 10, guard

Time (t)

P
(o
bs
er
v
ed

)

Figure 3: Probability of a client making a circuit using a malicious node with
0.16% (2MB/s) and 1.6% (20MB/s), left and right plots respectively, of the
middle bandwidth. Plots are shown for various frequencies of visit within a
fixed time interval.

This time may be shortened, for instance, by operating ten identical relays—
which is not an onerous burden on resources nor difficult to practically achieve—
and then there is an 80% chance that a user who connects to an onion service
once per day would take about 100 days and a user that connects ten times per
day will now only take about 10 days to create at least one circuit through our
middle relay (see lines labeled f = 1 and f = 10 in the right plot of Figure 3).
As reference, a similarly provisioned guard in this setting, the rightmost line
labeled f = 10, guard, has the same probability of observing that client only
after two orders of magnitude later, 1,000 days.

The preceding illustrates that middle nodes can enumerate more clients in a
shorter time frame. We want to clarify that both the guard relay and middle
relay observe the same number of circuits, but a different set of clients. The
guard relay will only observe circuits from a somewhat static subset of Tor
clients, but the guard observes all circuits from that subset. In contrast, the
middle relay will observe circuits from the set of all clients but only some of
the circuits built by those clients (in the same time frame). However, when
dealing with a frequently visiting user, the middle relay will be able to obtain a
representative sample of these accesses, which provides it qualitatively the same
information as the guard. In this way middles have a better overview of the
entire onion service and Tor userbase activity, albeit sampled at a known rate.

5 Circuit purpose and position fingerprinting

We have argued that the middle relay position is advantageous for obtaining a
statistical sampling of client activities across the Tor network. In this section,

i
i

i
i

i
i

i
i

CIRCUIT PURPOSE AND POSITION FINGERPRINTING 217

we show how machine learning classification techniques can be used by the
middle relay to determine which middle position and which circuit purpose
(i.e.,, onion service or general) it is serving, enabling it further analyze only
circuits that carry onion service traffic.

5.1 Methodology

There are multiple middle onion service circuit positions in which a middle relay
could serve, and a middle relay will also serve in non-onion service, general
purpose circuits (see Figure 1). To understand how a middle relay can detect
its position in a circuit and the circuit purpose, we first generate a large data
set of circuits that were built using Tor. We modified a Tor middle relay5 to
log messages containing the information necessary to perform the classification,
and we incorporated a new signaling mechanism that enables the client to send
ground truth to the relay for evaluation purposes. We run our modified Tor
code under simulation in Shadow [18] as well as on the live Tor network. For
the latter, we need to be sure that we do not capture any information from
circuits that are not under our control in order to protect real Tor users.

Circuit Signaling

In order to perform classification, our middle relay requires timing and flow
information from Tor circuits. A middle relay and client under our control
will not be directly connected, however, and therefore we need a signaling
mechanism with which our client can identify to our middle relay the circuits
that we control and that are safe to analyze.

We added a new signaling cell to the Tor protocol and a mechanism to allow
the client to pin a relay as its R-C-M1 middle on all circuits. The signaling
cell is inserted by our Tor client into new circuits that it creates through our
middle. The new cell is encrypted for and sent to our middle relay through the
Tor circuit, and no other relay in the circuit can read it. The new cell identifies
to our middle relay that the circuit on which the cell is sent should be labeled
as our own circuit and therefore that it is safe to start tracing the circuit. The
signal cell may include an optional payload so that the client can send ground
truth information about the circuit (i.e.,, the purpose and position of the relay),
stream, and HTTP request (i.e.,, the URL being fetched) to our middle relay.

5We branched Tor at version 0.2.7.6

i
i

i
i

i
i

i
i

218 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

Tracing Traffic Patterns at the Middle Relay

Once our middle relay has identified that a circuit is initiated at our client,
it begins collecting information about the circuit and the cells transferred
through it. This information is exported through the Tor control protocol,
which provides a well-defined interface [1] for other applications to request and
consume information about Tor (including information associated with periodic
events). For every circuit on which we receive a signal from our client, the middle
relay exports a unique circuit ID, circuit creation time, as well as the IP address,
fingerprint, and relay flags of the previous and next hop relays. It also begins
logging information about each cell it sends and receives on that circuit: it logs
the direction of the cell (outbound or inbound), how the cell was transferred
(sent or received), the time the cell was transferred, the unique ID of the circuit
to which the cell belongs, and the cell type and command (which are used to
instruct relays to, e.g.,, create, extend, and destroy circuits or relay traffic).

Collecting Data with Shadow

We ran our customized Tor software under simulation in Shadow [18] in order
to generate a large corpus of circuits suitable for analysis. Shadow is a discrete-
event network simulator that directly executes Tor, and therefore faithfully
executes all of the logic associated with building Tor circuits. Shadow allows us
to construct and run a private Tor network, complete with directory authorities,
relays, clients, servers, and onion services, and gives us full control over our
network. We run Shadow experiments in a private, local environment free of
privacy risks to real users.

Our primary goal is to collect a large sample of circuits from the perspective of a
middle relay, which could be done either by running many smaller experiments
in parallel or fewer larger experiments sequentially using the same amount of
RAM. We didn’t believe it was necessary to run a full-scale Tor network because
the features used by our purpose and position classifiers are not sensitive to
network congestion or scale (we don’t use any time-based features). Running
smaller networks means we can more effectively parallelize our experiments,
sample more initial random seeds, and more quickly obtain results. Therefore,
we generated a small private Tor network configuration with 50 relays, 128 web
clients, 42 bulk clients, and 100 servers. We ran 83 experiments with distinct
seeds for one simulated hour each (83 simulated hours in total) on a machine
with a total of 40 Intel Xeon 3.20GHz CPU cores (80 hyper-threads) running
the latest CentOS 7 version of Linux. We ran 4 multi-threaded experiments at
a time, and each experiment took roughly 3.5 hours to complete.

i
i

i
i

i
i

i
i

CIRCUIT PURPOSE AND POSITION FINGERPRINTING 219

During our experiments, the clients behave as follows. The bulk clients
continuously download 5 MiB files. The web clients request data according to
an HTTP model where the size of the first request and response, the number of
embedded objects per page, the size per embedded object request and response,
and the number of distinct domains per page are all sampled from the HTTP
Archive.6 Web clients pause for a time drawn uniformly from 1 to 30 seconds
after each full web page has been downloaded before starting the download of
another page. Because HTTP Archive data is constructed by downloading real
websites from the Alexa top sites list, we believe that the number of Tor circuits
that are created when clients use this model is representative of typical Tor
circuit usage. Finally, 8 of the web clients and 2 of the bulk clients download
their data from onion services, while the remainder of each download their data
over regular 3-relay-hop circuits.

We configured one middle relay to act as a middle measurement relay. We
enabled the signaling mechanism described above on each client in the network,
so that our measurement middle relay would receive ground truth circuit
information and collect cell traces for all circuits built through it. A significant
advantage of using Shadow is that we are able to inspect all such circuits without
risking user privacy. During our experiments our middle measurement relay
collected tracing information for 1,855,617 total circuits, 813,113 of which were
onion service circuits.

5.2 Feature extraction

We extracted features from our large corpus of circuits based on the observation
that cell meta-data, such as cell type and relay command, leaks information to
a relay about its position in the circuit and the circuit type (see Figure 4). We
also make the following observations: (i) a relay will send a different number
of cells during the circuit construction process depending on its position in a
circuit; (ii) different relay positions may receive different cell types and relay
commands during circuit construction (e.g.,, guards and middles will extend
circuits while exits will not); (iii) relays may or may not connect to other known
relays on either side of a circuit (iv) onion service introduction circuits transfer
much less data than rendezvous circuits used to download web content; and
(v) asymmetric web content downloads would result in more cells traveling
toward the circuit originator on client-side rendezvous circuits but away from
the circuit originator on service-side rendezvous circuits. To incorporate the
previous observations, we use as features the counts of the number of each
possible (cell type, relay command) pair that a relay handles. A relay may

6http://httparchive.org

http://httparchive.org

i
i

i
i

i
i

i
i

220 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

Figure 4: Circuit establishment and data transfer involves various cell types and
commands, which in this example are labeled on the arrows and are readable
by the node to which the arrow points ({enc} denotes that the command is
unreadable). Cell meta-data leaks information to a relay about its position in
the circuit and the circuit type.

Figure 5: A relay may send and receive a different number of cell types on the
inside and outside of a circuit.

observe a cell on different sides of a circuit (see Figure 5), so we also include
counts of the number of cells that a middle is sending and receiving on both
the inbound initiator side of the circuit (inside) and the outbound extension
side of the circuit (outside). Finally, we include the total number of cells that
the relay is sending and receiving on either side of the circuit, and whether or
not the previous and next hops may serve as guard or exit relays.

Note that although it was recommended in previous research [22], we do not
include cell timing information in order to be more robust to Tor relay congestion.
Interestingly, during the feature analysis we incorporated the circuit duration and
cell sequence features that Kwon et al. have shown to be useful in distinguishing
circuit purpose when classifying circuits from the position of the guard-to-client
link [22]. However, we found that these features reduced the accuracy of our
classifier, and therefore we ignore those features in the remainder of our analysis.

i
i

i
i

i
i

i
i

CIRCUIT PURPOSE AND POSITION FINGERPRINTING 221

5.3 Training

The goal of our classifier is to predict when a relay is serving on a rendezvous
purpose circuit and in the first middle relay position (i.e.,, an R-C-M1 relay as
shown in Figure 1). Previous work by Kwon et al. [22] provides a decision-tree
driven classifier to perform purpose filtering but it was designed for use by
relays in the guard position or an eavesdropper on the client-to-guard path and
not from middle relays. We design a new random-forest driven classifier that
performs with comparable accuracy but is tuned for relays in positions between
the guards of the client and onion service. Random forests generalize better
than simple decision trees, which tend to overfit the training data, thus random
forests are more robust against small differences between training and testing
settings. We followed prior work on model selection and tuning [14, 22] and,
after a search of the parameter space, we found that 30 trees for the random
forest provide the highest accuracy.

We trained separate random forest classifiers for circuit purpose and circuit
position using the pyborist and sklearn python APIs on our Shadow-generated
circuit dataset and the features we previously described. For both classifiers,
we assume no prior knowledge about the circuit purpose or position, so the
classifiers could be run independently of one another without affecting the
accuracy. To ensure that the classifier does not overfit to our specific dataset,
we used standard machine learning procedures such as balancing the dataset
so that each class (i.e.,, rendezvous vs. other purpose, and C-M1 vs. other
position) has the same number of circuits.

We used k-fold cross validation (k = 10) to measure how well the classifiers
generalize to unseen data. During this process, our original circuit sample is
randomly partitioned into k equally-sized subsamples. There are k phases in
total: in each phase, a distinct subsample is used as the testing set while the
remaining k − 1 subsamples are used as the training set. To train, we convert
each circuit from the training set into a feature set labeled with the true class
(the true purpose or position) and pass that into the classifier’s training function.
To test, we convert each circuit from the testing set into a feature set (without
the ground truth class label) and pass it into the classifier’s prediction function
to predict the class label. We evaluate prediction performance by measuring
true and false positives and negatives and computing standard related metrics
such as accuracy and precision.

i
i

i
i

i
i

i
i

222 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

5.4 Results

The evaluation results are shown in Table 1. As shown, the accuracy for the
purpose classifier is over 92 percent with a standard deviation of 0.07 and the
accuracy of the position classifier is over 98 percent with a standard deviation of
0.01. Table 2 shows the most important features as determined by our analysis,
i.e.,, the features that minimize the information gain in every branch of the
random forest. Not surprisingly, cells associated with the circuit construction
(create/created type cells and relay type cells with extend/extended commands)
are often some of the top features for distinguishing both purpose and position,
and the total number of cells sent and received are also useful for both classifiers.

Table 1: 10-fold cross-validated circuit classification results.

Purpose (rendezvous vs other) Position (C-M1 vs other)

Accuracy 92.41± 0.07% 98.48± 0.01%

Precision 91.87± 0.11% 97.16± 0.03%

Recall 93.05± 0.09% 99.88± 0.01%

F-1 92.46± 0.07% 98.50± 0.01%

True Positives 396,615 (91.77%) 821,478 (97.08%)

False Positives 35,576 (8.23%) 24,689 (2.92%)

False Negatives 30,056 (6.95%) 984 (0.12%)

True Negatives 402,135 (96.05%) 845,183 (99.88%)

Based on our results, we believe that our simple cell-based counters serve as
effective features for position and purpose classification. They are simple and
easy to compute and may potentially be useful in other contexts such as onion
service fingerprinting when access to Tor cell meta-data is available.

6 Onion Service fingerprinting

In this section, we explore the extent to which middle relays can be effective at
carrying out state-of-the art website fingerprinting techniques on onion sites. We
describe how we modify and use the Tor and tor-browser-crawler software to

i
i

i
i

i
i

i
i

ONION SERVICE FINGERPRINTING 223

Table 2: Most important circuit classification features*.

Purpose (rendezvous vs other) Position (C-M1 vs other)

13.73% # (relay,{enc}) cells 23.22% next node is relay

11.11% # (create2,n/a) cells 11.23% # (relay,extended2) cells

09.10% # cells sent total 09.26% # (created2,n/a) cells

08.89% # cells received total 06.66% # cells sent total

08.31% # cells sent inside 06.61% # (create2,n/a) cells

07.78% next node is exit 06.12% # (relay_early,extended2) cells

07.66% # (relay_early,extended2) cells 05.75% # cells received outside

06.78% # cells received inside 05.32% # cells received total

05.83% # (relay_early,{enc}) cells 05.25% previous node is guard

04.26% # (created2,{enc}) cells 04.06% # (relay,{enc}) cells

* Shown are the top 10 of 22 total features used (both classifiers used the same
features).

gather data from a middle relay position, explain the fingerprinting techniques
that we performed on these data, and how we evaluated their efficacy.

6.1 Evaluating website fingerprinting

The website fingerprinting techniques that we chose for this evaluation are the
most scalable and successful known so far in the literature. These are:

Wang-kNN [29]

presented by Wang et al., it achieves over 90% accuracy for 100 non-onion
sites. Wang et al.’s features were actually families of features defined by a
certain parameter—for instance, the number of outgoing packets in the first
N (parameter) packets. By varying these parameters they generated more
than 3,000 features. The underlying learning model they used was a k-Nearest
Neighbors classifier (k-NN). k-NN classifies an instance by averaging over the k
closest instances in the dataset according to a given distance metric. In their

i
i

i
i

i
i

i
i

224 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

case, they used a weighted euclidean distance with a tuning mechanism that
minimizes the distance among traffic samples that belong to the same site, a
property that is especially suited for k-NN.

CUMUL [26]

presented by Panchenko et al., it is based on an SVM with a Radial Basis
Function (RBF) as a kernel. Their evaluations show that CUMUL achieves 93%
accuracy for 100 non-onion sites. CUMUL’s main feature is the cumulative sum
of packet lengths. The cumulative sum of a traffic trace is represented as a vector
with as many components as the number of packets in the trace. Recursively,
the first coordinate value is the length of the first packet and the i-th coordinate
is calculated by adding the length of packet i and the value of coordinate i− 1.
Since SVM expects fixed-size feature vectors and the cumulative sums have
varying sizes, they interpolate 100 points for each cumulative sum.

k-Fingerprinting (k-FP) [14]

presented by Hayes and Danezis, it is the most recent website fingerprinting
technique. It is based on Random Forests (RF) and k-NN and achieves similar
accuracy to CUMUL. Their feature sets are formed by 175 features that, among
others, include most of the features that have already been proposed in the
website fingerprinting literature to date. Their feature representation is novel:
instead of plugging the features directly into a classifier, they instead use the
leaves in a trained RF as the representation for classifying with a k-NN with
Hamming distance.

All of these attacks have also been evaluated in an open world of websites where
they perform with high accuracy. The open world is a more realistic setting
where the adversary cannot train on all sites that can be visited by the victim.

6.2 Methodology

We gather data that enables us to analyze the effectiveness of onion service
website fingerprinting attacks from internal circuit positions. We do this by
running our modified Tor software described in section 5.1 and section 5.1,
crawling a set of known onion sites, and tracing our client’s circuits from our
own middle relay.

i
i

i
i

i
i

i
i

ONION SERVICE FINGERPRINTING 225

We have automated our crawls using a web crawler that visits a list of onion
service URLs with the Tor Browser, called tor-browser-crawler.7 We based
our collection methodology on previous studies on website fingerprinting. As
Wang and Goldberg proposed [30], we divided the crawls into batches. In each
batch, we iterate over the whole list of URLs, visiting each URL several times.
The rationale behind batched crawls is that visits to a page in different batches
allows the capture of features that are invariant over time; and combining visits
within a batch reduces the time-independent noise due to sporadic errors or per-
visit variations such as advertisements. We also disable the UseEntryGuards
Tor option so that we select a different entry guard for each circuit. As a
result, we significantly reduce the probability that our testing and training
instances are collected over a circuit with the same entry guard, which would
unrealistically improve the accuracy of the attack [20].

To speed up the total crawling time, for every visit we create a new identity
using Tor Browser’s torbutton add-on, and then signal the Tor controller to
select a random entry relay. This way we don’t restart Tor on every visit. In
addition, restarting the identity guarantees that we have a clean browser state
for the visit, as previous studies have pointed out that keeping the browser state
may create artificial dependencies between consecutive visits [30].

The client logs TCP packet headers with tshark during each visit to an onion
page. We ignore the TCP payloads because they are encrypted and thus not
useful. By sniffing network traffic, we can reproduce previous WF evaluation
techniques that do not allow access to cell-level information. Because we are
interested in cell-level information in this work, we also use OnionPerf8 to collect
Tor cell traces at the client. For debugging and error detection purposes, we
take a screenshot of the page as rendered by the Tor Browser, intercept and
dump HTTP requests and responses with a browser add-on that the crawler
install on Tor, and dump the index.html source code. Recall that we apply
these techniques only on our own circuits and not those of regular users.

As we described in section 5.1, the client pins one of our middles as the R-C-M1 re-
lay (see Figure 1). Our middle relay collects the information from our custom sig-
naling cells as described in section 5.1 using OnionPerf in monitor mode. Onion-
Perf will produce a log file containing the data sent by the client as well as other
standard Tor events (e.g.,, bandwidth information). Each circuit that is created
by our own crawler will be labeled as such in the OnionPerf log file. We later pro-
cess these raw log files as necessary to apply the website fingerprinting technique.

In addition, our crawler also flags the start of a visit and sends a unique visit
ID to the middle along with the ID of the circuit used to carry the first HTTP

7https://github.com/onionpop/tor-browser-crawler
8https://github.com/robgjansen/onionperf

https://github.com/onionpop/tor-browser-crawler
https://github.com/robgjansen/onionperf

i
i

i
i

i
i

i
i

226 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

request. When we parse the logs, we discard all other circuits built to fetch that
onion site. We need these IDs so that we can parse only the cells that go through
that first circuit and discard cells to other circuits. (Recall from subsection 2.3
that our middle relay would miss third party onion service circuits, whereas
the entry relay will be able to record all clients’ circuits.) In fact, due to Tor’s
stream isolation, the middle relay has the advantage that traffic to the first-party
onion service will not blend with traffic to other sites, eliminating the need to
use special parsing techniques [31]. Note that our custom signaling cells will be
present in the client tshark logs, however, we filter out these artificially added
cells before classifier training.

The list of URLs that we crawl has been obtained from the ahmia9 Tor onion
service search engine maintainers. Before starting the crawls, we used torsocks
and curl to remove from the list onion sites that were down. We have removed
all the screenshots after error detection to avoid keeping illegal data on our
hard drives. In total we ran four middle relays to crawl 5,000 different onion
websites in parallel. After removing failed visits and thresholding so that all
websites had the same number of instances, the dataset ended up having 2,500
onion sites and 80 instances per site.

6.3 Ethics

Safety

We have tested our Tor source code modifications using Shadow [18]. However,
Shadow does not run the Tor browser crawler that we require to crawl onion
services in the website fingerprinting experiments. In order to capture the
complexities of the Tor Browser, and also to evaluate our attacks under
realistic background traffic and network congestion conditions, we conduct
our experiments in the live Tor network.

The signaling mechanism described in section 5.1 ensures that we only collect
traffic generated by our crawler. Using OnionPerf, we log only the events
associated with the traffic generated by our client. Thus, analysis and potential
attacks will be applied only on traffic data generated by our own visits.

Following the principle of data minimization, our middle relays only collect
traffic data attributes strictly necessary for applying traffic fingerprinting attacks.
We ignore the payload of network packets captured at our client, as they are
encrypted and are not useful for fingerprinting purposes. The HTML sources and
screenshots are also removed after the error detection and outlier removal phases.

9https://ahmia.fi/

https://ahmia.fi/

i
i

i
i

i
i

i
i

ONION SERVICE FINGERPRINTING 227

Benefits and Risks

Since we are not collecting any data of regular Tor users, there is no de-
anonymization risk from our traffic datasets. There may be a small indirect risk
of leaking user personal data in the screenshots and HTML sources, but they
were deleted before publication, after being used for the integrity checks of our
traffic dataset.

With respect to the impact of our experiments on Tor’s performance, the volume
of the traffic generated by our crawls is comparable to that from a regular user
actively browsing the Web for a few hours. We do not expect a significant
impact on network performance.

Our methodology allows us to explore one of the main research questions in this
work: whether fingerprinting is effective in the middle position of our circuits. In
addition, it will help us compare the effectiveness of these techniques at different
layers of the network stack (i.e.,, the application layer and the transport layer).
Previous studies only applied WF on TCP packets and used heuristics to filter
cell types that are not useful for fingerprinting (e.g.,, SENDME cells). Our middle
relays have access to cell information and thus can directly utilize or filter
control cells that are not related to a website.

6.4 Results

Website Fingerprinting Effectiveness at the Middle

Here we explore the following research question: how effective is website
fingerprinting at the middle with respect to the client? Specifically, we design an
experiment to determine whether the accuracy of onion service fingerprinting is
affected by the position in the circuit (i.e.,, middle relay as compared to the
entry link).

We follow the methodology outlined in the previous section to obtain two
datasets: (i) TCP traces as collected between the client and the entry guard
and (ii) cell traces as collected from the middle relay. Both sets of traces were
collected at the same time to avoid confounding variables like changes of the
website over time [20]. To evaluate the effectiveness of website fingerprinting
at the middle, we apply the state-of-the-art techniques on both datasets and
compare the success rates.

Table 3 shows the accuracy scores for three classifiers on the network traffic
data collected at the client. The accuracy is defined as the number of True

i
i

i
i

i
i

i
i

228 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

Table 3: 10-fold cross-validated accuracies for the three state-of-the-art attacks
on our client-side TCP traces. The evaluations are closed worlds of 10, 50 and
100 onion sites.

k-NN k-FP CUMUL
Num sites (%) (%) (%)

10 95%± 0.03 95%± 0.06 92%± 0.04

50 75%± 0.02 85%± 0.03 81%± 0.02

100 67%± 0.01 68%± 0.03 64%± 0.02

Positives—test instances that have been correctly classified—over the total, also
known as True Positive Rate (TPR) or Recall.

As we see in the table, k-FP outperforms the other techniques by a small margin
followed by CUMUL and, lastly, k-NN, the least accurate technique. These
accuracies are consistent with existing evaluations of these techniques on onion
service sites [6]. We also evaluated the techniques on existing datasets [29] to
make sure that we are able to reproduce previous evaluations on regular sites
and that we do not introduce errors that stem from our methodology; we did
not find any major discrepancies from previous results.

On the other hand, Table 4 shows the accuracies the techniques achieved when
applied on the cell traces collected from our middle relay. In this table we see
that the classifiers are ranked in the same order as in the client: k-FP being
the most accurate and k-NN the least accurate. With respect to the accuracies
obtained at the client for the same classifier, we see some interesting differences:
while k-NN has a few percent points decrease in accuracy with respect to the
entry link scenario, both k-FP and CUMUL perform a few percent points better
when they are applied at the middle. This is plausible because each classifier
uses different features that may be more or less robust to timing and order
differences between both positions. The accuracy improvement can be explained
by the fact that we used TCP traces at the client, whereas the middle dataset
includes cell traces, conveying a higher amount of information and including
less noise than TCP traces [30].

Another interesting observation is that discarding all third-party circuits for
training and testing does not impact classifier accuracy. We attribute this result
to the low prevalence of third party embedded content in onion services (it has
been found on a large dataset of onion services to be less than 20% overall [6]).

i
i

i
i

i
i

i
i

ONION SERVICE FINGERPRINTING 229

Table 4: 10-fold cross-validated accuracies for the three state-of-the-art attacks
on our dataset of cell traces collected at the middle relay.

k-NN k-FP CUMUL
Num sites (%) (%) (%)

10 91%± 0.03 100%± 0.00 99%± 0.03

50 73%± 0.01 91%± 0.01 86%± 0.03

100 68%± 0.01 76%± 0.02 76%± 0.02

500 64%± 0.00 72%± 0.01 66%± 0.01

1,000 59%± 0.00 56%± 0.01* 63%± 0.01

* Due to RAM constraints we were not able to evaluate
k-FP using the optimal parameters for 1,000 sites
which reduced classifier accuracy.

Open world scenario

The preceding analysis and results are applicable to an idealized closed-world
scenario where we try to identify known and trained-on onion websites. We now
consider a more realistic and challenging open-world setting—one where unseen
and unknown onion websites may be introduced at testing time. We now present
an enhancement of our website fingerprinting techniques for this scenario.

In other recent open-world evaluations, the classifier is only trained on a small
fraction of the web pages in the world. In this setting, the user may visit any
page in the world, including pages of which the classifier is not aware. These
works define the open world evaluation as a binary problem: the positive class
is formed by a set of monitored pages that the classifier aims to identify and the
negative class by the remaining non-monitored pages [4,15,20,21,26,29]. During
training, the classifier is shown examples of both monitored and non-monitored
pages; however, the majority of the pages in the non-monitored set are not
present in the training set.

In this paper we have approached the open world differently. There is no strong
support to believe that the non-monitored samples used for training necessarily
represent the whole world of non-monitored pages because the sample that
is taken to train the classifier is small compared to the population, i.e.,, all
pages that could possibly be visited. This sample may bias the classifier toward
a specific choice of non-monitored pages selected for training or not actually
help the classifier discriminate monitored from non-monitored sites. Instead,

i
i

i
i

i
i

i
i

230 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

we propose to model the open world as a one-class classification problem: the
classifier only takes instances for the monitored class and draws a boundary
between the monitored pages and all other pages.

In particular, we have taken the monitored set to be composed by one single
web page—the best-case scenario for the adversary in such an open world.
We have collected 5,000 instances of a popular social network service (SNS)
that is deployed as an onion site and use 3,750 of the samples to draw the
decision boundary and 1,250 for testing. We have used 200,000 instances of
2,500 different sites (80 instances per site) for testing the one-class classifier for
onion service pages that are not the SNS.

For the one-class classifier we have used sklearn’s implementation of one-class
SVM with a radial basis function. The one-class SVM is parameterized on ν
which defines an upper bound on the fraction of training errors; ν can be used
to adjust the trade-off between False Positives and True Positives. We plotted
the ROC curve to find a value of ν that maximizes the number of True Positives
while keeping a low False Positive Rate. In Figure 6 we can see that ν = 0.2
achieves such a compromise, providing a FPR lower than 1% while the TPR is
slightly higher than 40%.

0 0.2 0.64 1

·10−2

0

0.4

0.5

ν = 0.2

FPR

T
PR

Figure 6: ROC curve to optimize the ν parameter. We can see that ν = 0.2
makes a reasonable trade-off between TPR and FPR. To deal with extreme
base rates, it is possible to minimize the FPR at the expense of the TPR.

We have chosen a subset of CUMUL’s features because they are also used in
an SVM for the closed world problem [26]. After analyzing different subsets,
we found that a combination of the first and last interpolation points of the
cumulative sum can separate SNS instances from the rest. In particular, we
used the second interpolation point (CUMUL’s 5th feature), describing the
first region of packets in the original trace, and the 87th one (CUMUL’s 90th
feature), which described mid- and end-regions of the trace.

i
i

i
i

i
i

i
i

ONION SERVICE FINGERPRINTING 231

−2 −1 0 1 2
−2

−1

0

1

2

Feature 5 (scaled)

Fe
at

ur
e

90
(s

ca
le

d)

Others test
SNS train
SNS test

Figure 7: Projection over two CUMUL features of the one-class classification
instances. The plus sign marks are instances used for training the classifier,
the circle marks are SNS instances used to test the positive class and the cross
marks are instances that belong to non-SNS sites used to test the negative
class. The black line shows the boundary that was learned by the classifier that
minimizes False Positives.

The results are presented in Figure 7 which shows a projection of the classification
space on these two features. The orange plus marks are the SNS’s training
instances, the purple empty circles are the SNS’s testing instances, and black
filled dots are “Others” instances. The decision boundary learned by the
classifier is depicted by the black line.

As we observe in Figure 7, there are many testing samples of SNS that fall
outside the boundary. This is because we tuned the classifier to minimize the
number of False Positives—instances of non-SNS pages that are classified as
SNS. This way we achieve a False Positive rate below 1%, but this has a cost of
a large number of False Negatives: the True Positive rate is 40%. The reason
we have optimized for low FPR instead of TPR becomes is because we are
interested in realistic deployments where the base rate of the positive class
becomes relevant, as we discuss next in subsection 6.5.

i
i

i
i

i
i

i
i

232 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

6.5 Precision is in the detail

The base rate is the probability that a site is visited, and can also be interpreted
as site popularity. Previous work has discussed the importance of the effect
of the base rate of the positive class (i.e.,, the SNS) on the Precision of the
classifier [20,21]. Precision is proportional to the number of samples that our
classifier detected as SNS that are actually SNS. In other words, Precision is an
estimate of the probability that the classifier was correct when it guessed SNS.

Prior work has pointed out that if the base rate of the positive class (i.e.,, the
SNS) is orders of magnitude lower than the negative class (i.e.,, Others), the
False Positive Rate (FPR) has to be negligible so that the classifier can perform
with sufficient Precision [20]. Since we cannot estimate the base rate of the
SNS’s onion site directly for ethical and privacy reasons, we have evaluated the
Precision of our one-class classifier for several hypothetical base rates.

In Figure 8, we show the Precision, the TPR, the FPR and training error (i.e.,,
ν). In the graph we see that all of the metrics are fixed for the whole range of
considered base rates, while precision decreases exponentially when the base
rate of the SNS tends to zero. The vertical dashed line indicates the base rate
(1%) where Precision is 50%; the point where the classifier is correct only half
of the time. These results are comparable to previous work that evaluated the
precision of the CUMUL classifier and achieved similar results [26].

0.005 0.012 0.05 0.1 0.25 0.5
1 · 10−2

0.2

0.4

0.96

SNS’s base rate (log scale)

Train error TPR FPR Precision

0

0.5

1

R
at
e

Figure 8: Performance metrics for one-class open world for the SNS’s base rates
ranging from 0.5% to 50%. The vertical dashed line shows the point in which
Precision is 50%.

i
i

i
i

i
i

i
i

ONION SERVICE FINGERPRINTING 233

0 12 50 750

0.5

1

Onion service index

Fr
ac
tio

n
of

er
ro
rs

Figure 9: Sites that were confused with the SNS at least once during the
classification (2,443 sites had zero errors). Note that the distribution is heavily
skewed and 80% of all the errors are concentrated in the 0.5% (12) of the sites
(see vertical dashed line) and 3% of the sites (75) include all the errors.

We further analyzed the sites that the classifier misclassified most often. The
distribution of errors over the sites is shown in Figure 9. We observe that 80% of
the errors are concentrated over 12 of the sites and only 3% of the total number
of sites are responsible for 100% the misclassification. Based on this observation,
we argue that it is possible that even for 1% FPR (see Figure 8), the classifier
may have greater precision if those 12 sites that are responsible for most of the
errors are less popular. Note that we assumed a uniform distribution of the sites
that belong to the Others sites. Further, it may be possible to design dedicated
classifiers that learn to distinguish between the SNS and each of these 12 sites
individually in order to reduce the number of False Positives that the classifier
incurs overall.

We manually checked the 12 sites that were misclassified as the SNS some
weeks after we crawled them. Five of the sites are offline and one of them has
been seized by the German Federal Criminal Police. The remaining sites are
up and are of a diverse nature: one is a personal homepage, two are movie
streaming sites, another is a porn site, one is a hacking page and, surprisingly,
the last one is the download page for the SecureDrop whistle-blowing software
(secrdrop5wyphb5x.onion) run by the Freedom of the Press. We believe that
they were confused with the SNS’s onion service page due to similarities in page
size.

i
i

i
i

i
i

i
i

234 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

7 Onion Service popularity measurement

We showed in section 5 how a relay can predict that it is serving as a middle
(in the R-C-M1 position) and on a rendezvous onion service circuit with high
confidence, and we showed in section 6 how website fingerprinting techniques
can be used to accurately predict which onion service webpage is visited. In
this section, we validate our previous results and show the practicality of the
techniques that we developed through a privacy-preserving measurement of the
popularity of a social networking site (SNS) accessible as an onion service.

7.1 Measurement goals and methodology

Tor circuit and website fingerprinting techniques have thus far been discussed
in the literature in the context of client deanonymization attacks. The goal of
the measurement study in this section is to show how to use the classification
techniques presented in the previous sections not for client deanonymization,
but to predict accesses to and safely measure the popularity of an onion service
SNS. In this study, we seek to: (i) develop a reusable framework for safe onion
service popularity prediction and measurement; (ii) validate our classification
techniques from the previous sections by running them in real time in a realistic
public Tor network environment on live Tor traffic (something that has never
been done before to the best of our knowledge); and (iii) show how our proof-
of-concept measurement framework can be used to discover the popularity of
an onion service in the open-world. Note that doing this measurement safely is
a primary goal that is further discussed below in subsection 7.4.

Achieving these goals involves several components. First, we run middle relays
in the Tor network that provide resources to Tor users. Second, our relays
must predict which circuits in which they are serving are onion service circuits
(specifically, rendezvous circuits since those are used to access web content).
Third, our relays must predict when they are in a middle position of circuits in
which they are serving (specifically, the R-C-M1 position since our classifiers
were trained for that position). Finally, our relays must predict which of the
predicted rendezvous circuits in which they predict the R-C-M1 position are
used to access the SNS. We next explain the tools that we built, modified, and
used to realize these goals.

i
i

i
i

i
i

i
i

ONION SERVICE POPULARITY MEASUREMENT 235

7.2 Measurement tools

We enhance PrivCount [19], an existing privacy-preserving Tor measurement
tool,10 to use a new prediction library that we developed to allow us to make
predictions in real time on real Tor relay traffic.

PrivCount Overview

PrivCount is a distributed measurement tool, based on the secret-sharing
variant of PrivEx [11], that can be used to safely measure Tor. PrivCount
works by extracting events from a Tor process and then counting the occurrence
of those events across a set of relays. PrivCount consists of a tally server,
several share keepers, and several data collectors (one for each relay in a set of
measurement relays). The tally server acts as a centralized, but untrusted, entity
that is primarily used as a proxy to facilitate data transfer between the other
nodes and as a single aggregation point following a completed measurement
phase. Each data collector initializes each counter that it is configured to
count with differentially-private noise, and also with random blinding values
that are secret shared to each share keeper. After initialization, each counter
on each data collector and share keeper will appear to hold a random value.
The data collectors each connect to their configured Tor relay, extract events,
and increment the configured counters when appropriate. At the end of a
measurement phase, the data collectors and share keepers send their counter
values to the tally server for aggregation. After aggregation, the blinding values
that were stored on the share keepers during the measurement will cancel out
with the blinding values that were added at the data collectors, and the final
output will be the sum of the true counter value and the differentially-private
noise that was added by the data collectors.

The noise that is added to each counter protects users under differential
privacy [9], and the blinding values provide for secure aggregation across
measurement relays. No data collector can learn anything about the counters
of other relays not also controlled by the same operator, and individual data
collector contributions to the final aggregated counter values are hidden (by the
random blinding values) as long as at least one share keeper is honest. Jansen
and Johnson provide additional PrivCount details and proofs of PrivCount’s
security and privacy properties [19].

10https://github.com/privcount

https://github.com/privcount

i
i

i
i

i
i

i
i

236 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

Enhancing PrivCount

PrivCount supports a wide range of statistics (e.g.,, number of circuits, amount
of data transferred, etc.), and we enhanced it to support counting the real-time
predictions of a circuit’s purpose, a relay’s position in a circuit, and the onion
page being accessed in a circuit. To enable these predictions, we utilize a
version of Tor that has been modified to allow for circuit signaling as described
in section 5.1, and to export the same circuit and cell meta-data that we
discussed in section 5.1. We use circuit signaling to collect ground truth during
the measurement while separating ground truth circuits that we created from
regular circuits that we did not (see subsection 7.5 for more details).

We developed a new library for PrivCount called onionpop11 that implements
the classifiers needed for prediction. The onionpop library extracts the features
we need for each of the three classifiers from Tor circuits and cells, and wraps
the python sklearn and pyarborist APIs to train the classifiers and predict
purpose, position, and webpage. We train our models to make binary predictions
of when the purpose is rendezvous, position is R-C-M1, and webpage is the
front page of our SNS of interest. We added new counters to PrivCount to
record the results of the predictions.

Due to its sensitive nature, we do not log any information to disk from circuits
that we did not originate ourselves. Therefore, a significant concern during the
development of our prediction library is that PrivCount will need to process cell
information from fast Tor relays in real time. For safety, we store circuit and
cell meta-data in RAM only for the lifetime of the circuit; when the circuit ends,
we run our predictions, increment counters to count the results, and then clear
the corresponding circuit and cell meta-data from RAM. This is consistent with
PrivCount’s data storage model, however, it requires that we process and store
a potentially large number of cells. To mitigate potential memory and compu-
tational resource bottlenecks, we implement a configurable hard upper limit on
the number of cells that we store per circuit (well above the amount we need to
distinguish the SNS) and only process a subset of the circuits on our relays by
sampling circuits uniformly at random according to a configurable sample rate.

7.3 PrivCount deployment

We set up a PrivCount deployment with 1 tally server, 3 share keepers, and
17 data collectors each connecting to a distinct Tor relay. These nodes were
distributed among 3 operators and hosted in 3 countries (Canada, France, and
the United States). Each of the relays ran our modified version of Tor, and each

11https://github.com/onionpop/onionpop

https://github.com/onionpop/onionpop

i
i

i
i

i
i

i
i

ONION SERVICE POPULARITY MEASUREMENT 237

of the tally server, share keepers, and data collectors ran our modified version
of PrivCount.12

Table 5: Daily action bounds for PrivCount deployment.

Action Bound

New general-purpose circuits 90
New rendezvous circuits 48

Client-side rendezvous circuits 24
Server-side rendezvous circuits 24
Client-side rendezvous circuits to SNS 2

Privacy

Our PrivCount deployment uses the parameters and privacy budget allocation
techniques set out by Jansen and Johnson [19]. Specifically, we use differential
privacy parameters ε = 0.3 (which has also been used by Tor [13]), and δ = 10−3

(which is an upper bound on choosing a noise value that violates ε-differential
privacy). Our deployment provides privacy according to the daily action bounds
shown in Table 5, which are all based on circuit counts since that is what our
deployment will measure; users whose actions stay below these bounds will
be protected under differential privacy. We protect users who use 90 or fewer
general-purpose circuits per day, which could be used to access one site every
ten minutes for 8 hours plus 10 additional circuits. We protect users who use 48
or fewer rendezvous circuits per day when not distinguishing between client-side
or server-side, and otherwise 24 or fewer each of client-side and server-side
rendezvous circuits per day: 75 percent of the onion sites we crawled (section 6)
used 4 or fewer circuits, and so the number of circuits we protect could be used
to access 1 onion site every 10 minutes for one hour.

Measurement Rounds

We ran three different 24-hour long measurement rounds. The first round of
measurements was used to calibrate the noise added to our counters. We used
previously published measurements of Tor activity [19] to allocate our privacy
budget across the configured counters. We then measured general and onion
service circuit usage from different relay positions to obtain updated estimates

12All framework components are available at https://github.com/onionpop.

https://github.com/onionpop

i
i

i
i

i
i

i
i

238 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

of circuit activity, which we used to adjust the allocation of our privacy budget
in the subsequent rounds.

In the second measurement round, we focused on measuring the number of direct
connections from the SNS of interest to our relays serving in the rendezvous
position based on the IP address and autonomous system (AS) number of
the SNS. This was possible because the SNS runs a single onion service that
connects directly to the rendezvous point rather than a normal onion service
which builds a three-hop circuit to connect. This set of measurements allow us
to verify our circuit purpose and position classifiers.

In the third measurement round, we enabled our classifiers and focused on
counting the results of the predictions. We also configured a crawler under our
control to access the SNS in order to assert that our deployment was working
properly and to cross check our prediction results (the prediction results for our
crawler’s circuits were kept separate from the results for other circuits). During
round three only, we configured a circuit sample rate of 0.12 and excluded
our exit relays from the measurement (since they would not contribute to the
middle relay prediction counters) in order to prevent resource bottlenecks in our
deployment pipeline. The percentage of Tor network bandwidth that the relays
in our deployment controlled during each measurement round is shown in Table 6.

Table 6: Combined positional relay bandwidth by percent for PrivCount
deployment.

Round Guard Middle Exit Intro. Rend.

Measurement 1 1.15% 0.78% 3.52% 0.88% 0.78%
Measurement 2 1.30% 0.87% 3.11% 0.99% 0.87%
Measurement 3* 1.03% 0.68% *0.0% 0.77% 0.68%

* To mitigate potential resource issues, exit relays were excluded
from measurement 3 (the classification round) since they would
not have contributed to middle relay onion service prediction
counters.

7.4 Research ethics and user safety

Our measurement study explicitly prioritizes user safety as a primary goal.
We practice data minimization, limit measurement granularity, and provide
additional security to the measurement process as described above. We

i
i

i
i

i
i

i
i

ONION SERVICE POPULARITY MEASUREMENT 239

have incorporated feedback from the Tor Research Safety Board13 into our
methodology: on suggestion of the board we created a website explaining our
study14 and linked our measurement relays to it, and we informed the SNS of
our intentions to measure their site (although we did not receive a response
from any of the employees of the SNS).

Because the main classification-based measurements are done from middle relay
positions, onion-encryption technically prevents us from learning any client-
identifying information. Although this protects users to some extent, we further
protect users by utilizing the state-of-the-art in safe Tor measurement tools
and techniques. Specifically, we use PrivCount and the techniques set out by
Jansen and Johnson [19] and Elahi et al. [11] to provide differential privacy and
securely aggregate measurements across all of our relay data collectors.

The PrivCount counters are initiated to noisy values to ensure differential
privacy is maintained, and are then blinded and distributed across several share
keepers to provide a secure aggregation process. At the end of the process, we
learn only the value of these noisy counts aggregated across all data collectors,
and nothing else about the information that was used during the measurement
process. Specifically, we do not learn relay-specific inputs to the final counter
value, and client usage of Tor during our measurement is protected under
differential privacy.

Importantly, we chose to show our proof-of-concept by only predicting accesses
to a single onion site that we believed had non-trivial usage and that already
has implied that it does not require anonymity by running a non-anonymous
single onion service. We explicitly chose not to measure additional regular onion
sites because: (i) we did not believe it was necessary to show the effectiveness of
our techniques; (ii) we wanted to avoid leaking more information than necessary
about specific onion site usage; and (iii) running a hidden onion service would
imply that anonymity is required or at least desired by the service.

7.5 Results

In addition to measuring the results of our classifiers, we also focused our
PrivCount deployment on direct measurements that would allow us to validate
our classification results.

13https://research.torproject.org/safetyboard.html
14https://onionpop.github.io

https://research.torproject.org/safetyboard.html
https://onionpop.github.io

i
i

i
i

i
i

i
i

240 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

Direct Measurements

The direct measurement results are shown in Table 7. We measured the number
of observed circuits on our relays from the circuit entry, middle, and end
(including various types of rendezvous circuits). Our measurements indicate a
significantly lower number of onion service rendezvous circuits compared to non-
onion service circuits, as expected. While we discuss how these measurements
give us an idea of popularity below, here we note that there are more than an
order of magnitude fewer rendezvous circuits compared to non-onion service
circuits.

Table 7: Results for direct measurement of Onion Service protocol.

Circuit Count Description Count ± 95% CI

Entry 20,351,667 ± 3.45%
Middle 16,212,157 ± 4.33%
End (Exit + Rendezvous + etc.) 18,904,815 ± 3.71%

Rendezvous (Client or Service) 272,180 ± 5.15%
Rendezvous Client 136,191 ± 5.15%
Rendezvous Service 136,874 ± 5.12%

Rendezvous Service to SNS ASN 718 ± 91.64%

Exit + Rendezvous Client 11,327,103 ± 6.19%
Exit + Rendezvous Service 11,394,600 ± 6.16%

Because there are many circuits built in Tor over the period of a day, the
relative accuracy of our direct measurements is quite high: most of the 95%
confidence intervals lie between 3 and 6 percent. The one outlier is the direct
measurement from the rendezvous node position of connections from the SNS
ASN, which we can use to measure its popularity since this particular SNS runs
a single onion service. The confidence interval is higher than expected (91.64%)
which indicates that the SNS onion service is much less popular than expected,
with potentially fewer than one hundred accesses through our relays during our
measurement period.

Classifier Measurements

A primary purpose of our measurement is to test the ability of our classifiers to
detect when a relay serves on a rendezvous circuit, in the R-C-M1 position, and if

i
i

i
i

i
i

i
i

ONION SERVICE POPULARITY MEASUREMENT 241

Table 8: Results for measurement of Onion Service classifier detection.

Classifier # Positives # Negatives

Purpose is Rendezvous* 114,762±28.54% 2,444,166±79.82%
Ground Truth Tests** 645 (100%) 0 (0%)

Position is R-C-M1* 49,679±32.99% 68,022±48.15%
Ground Truth Tests** 623 (96.5%) 22 (3.4%)

Site is SNS* 10±1200% 45,376±36.12%
Ground Truth Tests** 374 (60.0%) 249 (40.0%)

* These values may appear lower than expected because we sampled
circuits at a rate of 12% due to resource constraints.

** The ground truth tests were run with a crawler accessing the SNS
during measurement, so these values represent true positives and
false negatives.

it can identify accesses to a site of interest (SNS in our case). To do this, we send
circuit meta-data (including cell meta-data for cells transferred on the circuit)
to our classifiers when the circuit ends and record the detection results. We also
run a crawler that creates rendezvous circuits through our middle relays during
our measurement. The circuits created by our crawler provide ground truth
that we can use to evaluate the classifiers’ true positive and false negative rates.

Our classifier detection measurement results (including our ground truth crawler
tests) are shown in Table 8. We again see a similar trend in that an order of
magnitude fewer rendezvous circuits are detected compared to non-rendezvous
circuits. With these measurements, there is a significant amount of noise
associated with our measurements; this is primarily because we added the full
amount of noise to provide differential privacy while at the same time sampling
only 12% of circuits due to resource constraints. This has significantly increased
the relative noise in our measurements. As in our direct measurements, the low
number of SNS circuits has also caused our measure of the number of positive
SNS detections to appear insignificant due to the large confidence interval
associated with the noise that we added in order to protect privacy.

Our ground truth measurements show that the true positive rate for the purpose
classifier was 100%, the true positive rate for the position classifier was 96.5%
while the false negative rate was 3.4%, and the true positive and false negative
rates for the SNS classifier were 60% and 40%, respectively. With these results,
we are optimistic that our classifiers are functioning as intended. We assert

i
i

i
i

i
i

i
i

242 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

that an adversary who is not concerned with privacy (and does not add noise)
would be able to make much more precise measurements than we describe here.

Popularity

We estimate the popularity of the onion service protocol by computing the
fraction of middle relay circuits that are rendezvous circuits. Middle relays
that do not serve as the rendezvous point on a circuit cannot determine with
certainty whether or not the circuit is a rendezvous circuit, but they can predict
it by running our circuit purpose classifier. As previously discussed, we also
measure the popularity of the onion service protocol independently and directly
when our relays do serve as rendezvous points, since in that case our relays can
distinguish client-side and server-side rendezvous circuits from others.

Table 9: Likely Onion Service popularity by fractions of circuits of various
types.

Description Method Popularity

Onion Service Popularity (as % of non-onion circuits)
Rendezvous / Entry Direct 1.34%
Rendezvous / End Direct 1.45%
Rendezvous Client / Exit + Rendezvous Client Direct 1.20%
Rendezvous Service / Exit + Rendezvous Service Direct 1.20%
Purpose is Rendezvous / Total Classified 4.48%

SNS Popularity (as % of onion circuits)
Rend. Service to SNS ASN / Rend. Service Direct 0.52%
Site is SNS / Total Classified 0.02%

Our popularity estimates are shown in Table 9. The entries in the table
show several ways one could estimate popularity, with our classification-based
estimates at the bottom of each section. The direct measurement approaches
indicate that onion service popularity is between 1% and 1.5% based on circuit
counts; for comparison, 0.9% of Tor traffic by volume (i.e.,, bytes) is onion
service traffic (900 Mbit/s onion15 of 100 Gbit/s total16) according to Tor
metrics. Our classification-based estimate is a bit higher at 4.48%, but we note
this result includes noise and an unknown number of false positives. Similarly,
our direct measurement of accesses to the SNS onion site front-page is 0.52% of
rendezvous service circuits whereas our classification-based estimate is 0.02%.

15https://metrics.torproject.org/hidserv-rend-relayed-cells.html
16https://metrics.torproject.org/bandwidth.html

https://metrics.torproject.org/hidserv-rend-relayed-cells.html
https://metrics.torproject.org/bandwidth.html

i
i

i
i

i
i

i
i

RELATED WORK 243

7.6 Discussion

Our laboratory results from the previous sections show that WF at the middle
relay position is just as effective w.r.t. recall and precision as has been shown
from the guard position in previous works—both for closed- and open-world
scenarios. On the other hand, our real-world results indicate that the base-rate
of the site we chose (i.e.,, the SNS) was too low for our classifier to provide high
confidence for its counter. However, what we can learn with high confidence
is that the popularity of the SNS as an onion service is almost negligible when
comparing SNS onion service circuits to all other onion service circuits. This
result was unexpected: our intuition for picking this particular SNS was that it
is known to be one of the most popular websites in the world. Our results show
that a much lower FPR—up to two orders of magnitude lower—is necessary
for WF to be useful in measuring individual onion sites.

8 Related work

Although there are many studies that explore the extent to which traffic analysis
can leak information on Tor [12,23,24], here we focus on website and onion site
fingerprinting.

8.1 Tor website fingerprinting attacks

The first WF attack on Tor was proposed and evaluated by Herrmann et al. and
only achieved 3% success rate [15]. This research area has since seen great
activity and the latest WF studies achieve more than 90% accuracy under
specific conditions and scenarios [4, 14,26,28–30].

Recent work attempted to address WF on non-onion websites in an open
world model and increases the scalability of evaluation approaches [26], but
the closed world model has been considered realistic for the evaluation of WF
on onion services [6] due to their limited number. It has been shown that
a local and passive adversary can effectively detect onion service visits using
circuit fingerprinting, and then apply website fingerprinting methods to infer to
which website they belong [22]. Errors when classifying onion service websites
have been explored in order to further improve WF techniques [25], but the
practicality of monitoring a realistic number of sites even in the smaller onion
service world is still in question [27].

i
i

i
i

i
i

i
i

244 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

To the best of our knowledge, we are the first to apply circuit, position, and
WF techniques from middle relays, and we are the first to use our classification
techniques on traffic initiated from real Tor users. While we apply our techniques
for measurement purposes, recent work has shown how our techniques can be
used to further target specific users [17].

8.2 Tor website fingerprinting defenses

Several defenses have been designed to mitigate WF attacks. Most of these
defenses are based on link padding [10, 21, 29], that is, adding dummy messages
that are indistinguishable from real ones in order to make the features that
WF exploit ineffective. Prior work assumes that the middle collaborates in
the defense and removes the padding, in which case our techniques would not
be affected. End-to-end padding that does not depend on collaborating Tor
infrastructure [6] could disrupt the traffic analysis techniques we leverage, but
would come at a prohibitively-high performance cost.

Restricted routing—e.g.,, if middles were chosen and used long term as is
currently the case with guards—would limit the number of users from which
a middle could observe circuits. In that case, middles could lose much of the
advantage over guards as preferential observation points.

8.3 Onion site enumeration

Existing HSDir lookup protocols have been shown to be vulnerable to attack
by an adversary running low-bandwidth relays [3]. By exploiting the lookup
protocols, an adversary running an HSDir can directly measure the popularity
of the onion services whose addresses are assigned to it. Previous work has used
this approach to better understand the popularity of content in the onion service
ecosystem [2]. These attacks can be mitigated by changes in the HSDir protocol.

Tor is currently deploying next-generation onion services in order to limit the
effectiveness of onion service enumeration attacks, but the planned defenses will
not significantly change the flow of cells through a circuit (like padding does)
and therefore we believe that they will not significantly affect the accuracy of
our techniques.

i
i

i
i

i
i

i
i

CONCLUSION 245

9 Conclusion

We have shown that a significant amount of information is leaked to middle relay
positions, although the extent of this threat is often overlooked. We describe
how the design of Tor admits to middle relays a wider visibility over all users of
the network because clients pick new middle relays for every circuit that they
build. We have shown through extensive data collection and experimentation
that traffic analysis techniques are as effective from internal middle positions as
they are from ingress and egress (guard and exit) positions. In particular, we
have built a traffic analysis pipeline that can detect a relay’s position in a circuit,
the purpose of the circuit, and identifies the onion service being accessed through
a circuit. We have then put the pipeline into practice to measure the popularity
of a well-known social network onion service: we are the first to apply these
traffic analysis techniques on real Tor user traffic to the best of our knowledge.
Although our measurement results are constrained in scale and accuracy due to
resource and ethical concerns (constraints not shared by malicious actors), our
framework provides the means to study effective mitigation to potential threats
and to gather additional measurements.

9.1 Lessons learned

It is clear that more progress needs to be made and this present work provides
positive first steps in that direction. We anticipate that classification techniques
at middle relay positions will not deteriorate and point out some of the challenges
to deploying them in the real-world. First, our pipeline was created in order to
reduce the number of circuits that need to be processed by the WF classifier;
we filter out real user circuits for training and non-onion service circuits with
the circuit classifier during testing. This greatly reduced the overhead both
in training and testing and improved our results. Therefore, careful filtering
and data pre-processing are keys to successful real-world deployments. Second,
our measurement was done in real-time: everything was kept in RAM, and
we used a low circuit sampling rate of 0.12 due to computational and memory
limitations. We found that real-world scale may overwhelm available resources
and pragmatic compromises may need to be made. Third, we were very
concerned with user safety in our real-world measurements and hence our
results are noisy. Depending on the use-case (e.g.,, a malicious actor), noise
may not be necessary; removing this requirement would reduce the operational
overhead of running the privacy-preserving apparatus and may allow higher
sampling rates.

i
i

i
i

i
i

i
i

246 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

9.2 Future work

Using our current WF classification pipeline, an adversary could target the
guards that originate connections to websites of interest (e.g.,, the SNS). We
have shown that there are a small number of SNS circuits, and therefore the
set of guards used to access the SNS would also be small. An adversary could
reduce the time and cost of a targeting attack by focusing on only these guards
rather than, e.g.,, compromising guards at random and waiting until it is used
to access a website of interest. Some related target attacks that depend on our
techniques have recently been explored [17].

An alternative to compromising guards that route interesting connections is
locating the originating client or destination onion service using middle relay
network latency measurements. Hopper et al. [16] show the effectiveness of
such attacks from malicious websites. Mapping latency between an adversarial
middle and all Tor relays (or at least the most popular) [5] would assist in
narrowing the network and geographic location of circuit originators (e.g.,, to a
region or possibly a country).

An adversary could fingerprint protocols instead of websites to target a broader
base of users. For example, a censoring regime may fingerprint Tor’s pluggable
transports (PT) from the middle relay positions. Fingerprinting PTs from the
client-side—which is the current state-of-the-art—has a high FPR since PTs
are designed to be confused with other protocols that the censor is reluctant to
block. In contrast, fingerprinting PTs at a middle does not provide this same
confusion since only Tor traffic is present in the Tor network and the protocols
that the censor is reluctant to block (e.g.,, HTTPS) are not present. Assuming
that the censor already has the ability to identify users on the client-side, the
censor could greatly reduce the incidence of false positives in detecting PT
circuits. Furthermore, using timing correlations between client-side observations
could also identify PT users, and an adversary could use our fingerprinting
techniques to identify which websites PT users visit.

References

[1] TC: A Tor control protocol (Version 1). https://gitweb.torproject.org/
torspec.git/tree/control-spec.txt.

[2] Alex Biryukov, Ivan Pustogarov, Fabrice Thill, and Ralf-Philipp Weinmann.
Content and popularity analysis of Tor hidden services. In International
Conference on Distributed Computing Systems Workshops, 2014.

https://gitweb.torproject.org/torspec.git/tree/control-spec.txt
https://gitweb.torproject.org/torspec.git/tree/control-spec.txt

i
i

i
i

i
i

i
i

REFERENCES 247

[3] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling
for Tor Hidden Services: Detection, Measurement, Deanonymization. In
IEEE Symposium on Security and Privacy (S&P), 2013.

[4] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching
from a distance: Website fingerprinting attacks and defenses. In ACM
Conference on Computer and Communications Security (CCS), pages 605–
616. ACM, 2012.

[5] Frank Cangialosi, Dave Levin, and Neil Spring. Ting: Measuring and
exploiting latencies between all tor nodes. In Internet Measurement
Conference, 2015.

[6] Giovanni Cherubin, Jamie Hayes, and Marc Juarez. "Website fingerprinting
defenses at the application layer". In Proceedings on Privacy Enhancing
Technologies (PoETS), pages 168–185. De Gruyter, 2017.

[7] Roger Dingledine, Nicholas Hopper, George Kadianakis, and Nick
Mathewson. One fast guard for life (or 9 months). In Workshop on
Hot Topics in Privacy Enhancing Technologies, 2014.

[8] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security
Symposium, pages 303–320. USENIX Security Symposium, 2004.

[9] Cytnhia Dwork. Differential privacy. In International Colloquium on
Automata, Languages and Programming, 2006.

[10] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton.
Peek-a-Boo, I still see you: Why efficient traffic analysis countermeasures
fail. In IEEE Symposium on Security and Privacy (S&P), pages 332–346.
IEEE, 2012.

[11] Tariq Elahi, George Danezis, and Ian Goldberg. Privex: Private collection
of traffic statistics for anonymous communication networks. In ACM
Conference on Computer and Communications Security (CCS), pages 1068–
1079. ACM, 2014.

[12] Nathan S Evans, Roger Dingledine, and Christian Grothoff. A practical
congestion attack on tor using long paths. In USENIX Security Symposium,
2009.

[13] David Goulet, Aaron Johnson, George Kadianakis, and Karsten Loesing.
Hidden-service statistics reported by relays. Technical report, Tor Project,
April 2015.

i
i

i
i

i
i

i
i

248 INSIDE JOB: APPLYING TRAFFIC ANALYSIS TO MEASURE TOR FROM WITHIN

[14] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable
website fingerprinting technique. In USENIX Security Symposium, pages
1–17. USENIX Association, 2016.

[15] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website
fingerprinting: attacking popular privacy enhancing technologies with the
multinomial Naïve-Bayes classifier. In ACM Workshop on Cloud Computing
Security, pages 31–42. ACM, 2009.

[16] Nicholas Hopper, Eugene Y Vasserman, and Eric Chan-Tin. How much
anonymity does network latency leak? Transactions on Information and
System Security, 13(2), 2010.

[17] Aaron D Jaggard and Paul Syverson. Onions in the Crosshairs: When
The Man really is out to get you. In ACM Workshop on Privacy in the
Electronic Society (WPES), 2017.

[18] Rob Jansen and Nicholas Hopper. Shadow: Running Tor in a box for
accurate and efficient experimentation. In Network & Distributed System
Security Symposium (NDSS), 2012.

[19] Rob Jansen and Aaron Johnson. Safely measuring tor. In ACM Conference
on Computer and Communications Security (CCS), pages 1553–1567. ACM,
2016.

[20] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel
Greenstadt. A critical evaluation of website fingerprinting attacks. In
ACM Conference on Computer and Communications Security (CCS), pages
263–274. ACM, 2014.

[21] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew
Wright. Toward an efficient website fingerprinting defense. In European
Symposium on Research in Computer Security (ESORICS), pages 27–46.
Springer, 2016.

[22] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas
Devadas. Circuit fingerprinting attacks: Passive deanonymization of tor
hidden services. In USENIX Security Symposium, pages 287–302. USENIX
Association, 2015.

[23] Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew Caesar, and
Nikita Borisov. Stealthy traffic analysis of low-latency anonymous
communication using throughput fingerprinting. In ACM Conference on
Computer and Communications Security (CCS), 2011.

[24] S.J. Murdoch and G. Danezis. Low-Cost Traffic Analysis of Tor. In IEEE
Symposium on Security and Privacy (S&P), pages 183–195. IEEE, 2005.

i
i

i
i

i
i

i
i

REFERENCES 249

[25] Rebekah Overdorf, Marc Juarez, Gunes Acar, Rachel Greenstadt,
and Claudia Diaz. How unique is your onion? an analysis of the
fingerprintability of tor onion services. In ACM Conference on Computer
and Communications Security (CCS), pages 2021–2036. ACM, 2017.

[26] Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan
Pennekamp, Klaus Wehrle, and Thomas Engel. Website fingerprinting
at internet scale. In Network & Distributed System Security Symposium
(NDSS), pages 1–15. IEEE Computer Society, 2016.

[27] Andriy Panchenko, Asya Mitseva, Martin Henze, Fabian Lanze, Klaus
Wehrle, and Thomas Engel. Analysis of Fingerprinting Techniques for Tor
Hidden Services. In ACM Workshop on Privacy in the Electronic Society
(WPES), 2017.

[28] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.
Website fingerprinting in onion routing based anonymization networks.
In ACM Workshop on Privacy in the Electronic Society (WPES), pages
103–114. ACM, 2011.

[29] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg.
Effective attacks and provable defenses for website fingerprinting. In
USENIX Security Symposium, pages 143–157. USENIX Association, 2014.

[30] Tao Wang and Ian Goldberg. Improved Website Fingerprinting on Tor.
In ACM Workshop on Privacy in the Electronic Society (WPES), pages
201–212. ACM, 2013.

[31] Tao Wang and Ian Goldberg. On realistically attacking tor with website
fingerprinting. In Proceedings on Privacy Enhancing Technologies (PoETS),
pages 21–36. De Gruyter Open, 2016.

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Publication

Does encrypted DNS imply
Privacy? A Traffic Analysis
Perspective

Publication Data

Siby, S., Juarez, M., Diaz, C., Vallina-Rodriguez, N., and
Troncoso, C. Does encrypted DNS imply privacy? A traffic
analysis perspective. Submitted to the USENIX Security Symposium
(2020)

Contributions

• Principal author. First and second authors contributed equally.

251

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Does Encrypted DNS Impliy Privacy? A Traffic
Analysis Perspective

Sandra Siby1, Marc Juarez2, Claudia Diaz2, Narseo Vallina-Rodriguez3,4,
and Carmela Troncoso1

1 EPFL SPRING Lab, Lausanne, Switzerland
2 KU Leuven, ESAT/COSIC and iMinds, Leuven, Belgium

3 IMDEA Networks, Madrid, Spain
4 ICSI, Berkeley, US

Abstract. Virtually every connection to an Internet service is
preceded by a DNS lookup. These lookups are performed in
the clear without integrity protection, enabling manipulation,
redirection, surveillance, and censorship. In parallel with
standardization efforts that address these issues, large providers
such as Google and Cloudflare are deploying solutions to encrypt
lookups, such as DNS-over-TLS (DoT) and DNS-over-HTTPS
(DoH). In this paper we examine whether encrypting DoH traffic
can protect users from traffic analysis-based monitoring and
censoring. We find that performing traffic analysis on DoH traces
requires different features than those used to attack HTTPS or Tor
traffic. We propose a new feature set tailored to the characteristics
of DoH traffic. Our classifiers obtain an F1-score of 0.9 and
0.7 in closed and open world settings, respectively. We show that
although factors such as location, resolver, platform, or client affect
performance, they are far from completely deterring the attacks.
We then study deployed countermeasures and show that, in contrast
with web traffic, Tor effectively protects users. Specified defenses,
however, still preserve patterns and leave some webs unprotected.
Finally, we show that web censorship is still possible by analysing
DoH traffic and discuss how to selectively block content with low
collateral damage.

1 Introduction

The Domain Name System (DNS) is a critical subsystem of the Internet
infrastructure, on which most Internet-applications depend. Only in the

253

i
i

i
i

i
i

i
i

254 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

first quarter of 2019, more than 5 trillion DNS messages were exchanged
per month [8]. The vast majority of such messages are sent in the clear [25],
exposing the destination of communications to a number of entities: Internet
Service Providers (ISPs), Autonomous Systems (ASes), or state-level agencies,
can monitor users’ activities [32], hence enabling mass surveillance [18], and
easing network censorship by filtering and redirecting DNS traffic [71,73].

The lack of mechanisms to enhance DNS privacy raise serious concerns among
advocates [6] and Internet governance and standardization bodies [24]. Among
the solutions that have been proposed to prevent the inspection of domain
names, two protocols have been standardized and deployed: DNS-over-TLS
(DoT) [39] and DNS-over-HTTPS (DoH) [38]. These protocols protect the
communication between the client and the recursive resolver. More specifically,
DoH uses HTTP/2 over TLS, and thus, is well suited for encrypting browsing-
related DNS lookups [41]. Companies such as Google and Cloudflare have
launched public DoH resolvers [2, 11], and Mozilla recently added DoH support
to Firefox [28].

Under the assumption that encryption is enough to provide lookup con-
fidentiality, existing evaluations of DoH implementations have focused on
understanding the impact of the underlying transport protocol and encryption
on performance [58,59]. Yet, it is known that traffic features such as volume
and timing can reveal the destination of the communication [34,49,52,55,64,70].

In this paper we perform, to the best of our knowledge, the first traffic analysis
study of encrypted DNS from a security and privacy angle. We consider
an adversary placed between the client and the DNS resolver that aims at
identifying which web page is visited by users, to either perform surveillance on
users’ traffic or censor access to certain resources. We focus on the case of DoH,
as its adoption by large industry actors makes it prevalent in the wild.

The particularities of DNS traffic make it resistant to traditional traffic analysis
techniques [34, 49, 52, 55, 64, 70]. We identify a novel set of features based on
n-grams that capture local characteristics of traces that enable successful traffic
analysis for encrypted DNS. We show how this set of features is robust to changes
in the environment (e.g., end-user location or evolution of pages over time)
or in the client’s configuration (e.g., choice of client application, platform or
recursive DNS resolver) Furthermore, we find that our new feature set provides
comparable or better results than the state-of-the-art in website fingerprinting.

Motivated by our exchange with Cloudflare after responsible disclosure, we
evaluate existing traffic analysis defenses: the standardized EDNS0 padding [50]
and the use of Tor [5]. We find that in our setup, contrary to what was suggested
by Cloudflare engineers, EDNS padding strategies cannot completely deter our

i
i

i
i

i
i

i
i

BACKGROUND AND RELATED WORK 255

attack. Also, as opposed to traditional web traffic fingerprinting in which Tor
offers little protection against traffic analysis, in the case of DoH, Tor is an
extremely effective defense.

Finally, we measure the potential of encryption to hinder current DNS-based
censorship practices. Using a novel information-theoretic model we show that,
given that the size of the domain names associated with the resources embedded
in a webpage visit (e.g., third-party services, or content-providers) are the
primary source of information in DoH traffic, this information can be used by
censors to maintain their practices without much impact on other traffic.

To summarize, our main contributions are as follows:

• We conduct the first study of the vulnerability of DoH traffic to traffic
analysis attacks. We show that traditional web fingerprinting techniques do
not work on DoH and propose a new feature set to capture local characteristics
(Section 5.1).

• We show that traffic analysis is effective against DoH, achieving the same
accuracy as regular web fingerprinting while requiring 5x less volume of
data. We show that factors such as end-user location, choice of recursive
DNS resolver, client-side application, or platform affect, but do not stop, the
attacks (Section 5).

• We evaluate existing traffic analysis countermeasures and show that only Tor
can fully protect DoH traces (Section 6).

• We propose an information-theoretic model to evaluate the feasibility of
DNS-based censorship when DNS lookups are encrypted (Section 7).

• We gather the first dataset of encrypted DNS traffic collected in a wide range
of environments (Section 4).5

2 Background and related work

In this section, we provide background on the Domain Name System (DNS)
and existing work on DNS privacy.

The Domain Name System (DNS) is primarily used for translating easy-
to-read domain names to numerical IP addresses 6. This translation is known
as domain resolution. In order to resolve a domain, a client sends a DNS query
to a recursive resolver, a server typically provided by the ISP with resolving and
caching capabilities. If the domain resolution by a client is not cached by the
recursive name server, it contacts a number of authoritative name servers which

5Our dataset and code will be made public upon acceptance.
6Over time, other applications have been built on top of DNS [13,16]

i
i

i
i

i
i

i
i

256 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

hold a distributed database of domain names to IP mappings. The recursive
resolver traverses the hierarchy of authoritative name servers until it obtains an
answer for the query, and sends it back to the client. The client can use the
resolved IP address to connect to the destination host. Figure 1 summarizes
this process.

Enhancing DNS Privacy. As with other network protocols, security was
not a major consideration in the first versions of DNS, and thus DNS traffic
has been sent in the clear over (in some cases, untrusted) networks. Over the
last few years, security and privacy concerns have fostered the appearance of
solutions aiming to make DNS traffic resistant to eavesdropping and tampering.

Early efforts for enhancing DNS security include protocols such as DNSSEC [10]
and DNSCrypt [9]. DNSSEC introduces digital signatures to prevent
manipulation of DNS data. It does not, however, provide confidentiality.
DNSCrypt, first deployed by OpenDNS, both encrypts and authenticates DNS
traffic between the client and the recursive resolver. However, it was never
proposed to the IETF for standardization so it did not achieve wide adoption.

The IETF approved DNS-over-TLS (DoT) [39] and DNS-over-HTTPS (DoH) [38]
as Standards Track protocols in 2016 and 2018, respectively. In DoT, a DNS
client establishes a TLS session with a recursive resolver (usually on port
TCP:853 [39] as standardized by IANA) and exchanges DNS queries and
responses over the encrypted connection. To amortize costs, the TLS session
between the client and the recursive DNS resolver is usually kept alive and
reused for multiple queries.

In DoH, the local DNS resolver establishes an HTTPS connection to the recursive
resolver and encodes the DNS queries as HTTP requests. DoH considers the use
of HTTP/2’s Server Push mechanism. This enables the server to preemptively
push DNS responses to clients that are likely to follow a DNS lookup [40], thus
reducing communication latency. As opposed to DoT, which uses a dedicated
TCP port for DNS traffic and thus it is easy to monitor and block, DoH lookups
can be sent along non-DNS traffic using existing HTTPS connections (yet
potentially blockable at the IP level). However, DoT may be more convenient
for enterprise network administrators, as it allows keeping tighter control over
the DNS traffic.

There are several available implementations of DoT and DoH. Cloudflare and
Quad9 provide both DoH and DoT resolvers, Google supports DoH, and Android
P (currently in beta version) has native support for both DoH and DoT. DoH
enjoys widespread support from browser vendors. Firefox provides the option
of directing DNS traffic to a trusted recursive resolver such as a DoH resolver,
falling back to plaintext DNS if the resolution over DoH fails. Cloudflare also

i
i

i
i

i
i

i
i

PROBLEM STATEMENT 257

distributes a stand-alone DoH client and, in 2018, they released a hidden resolver
that provides DNS over Tor, not only protecting lookups from eavesdroppers
but also providing anonymity for clients towards the resolver. Other protocols,
such as DNS-over-DTLS [60], an Experimental RFC proposed by Cisco in 2017,
and DNS-over-QUIC [17], proposed to the IETF in 2017 by industry actors, are
not widely deployed so far.

Several academic works study privacy issues related to DNS. Shulman suggests
that encryption alone may not be sufficient to protect users [63]. Our results
confirm her hypothesis that DNS response size variations can be a distinguishing
feature. Herrmann et al. study the potential of DNS traces as identifiers to
perform user tracking but do not consider encryption [35]. Finally, Imana et al.
study privacy leaks on traffic between recursive and authoritative resolvers [42].
This is not protected by DoH and it is out of scope of our study.

3 Problem statement

In this paper, we set to answer the question: is it possible to infer which
websites a user visits from observing encrypted DNS traffic? This information
is of interest to multiple actors, e.g., entities computing statistics on Internet
usage [4, 7], entities looking to identify malicious activities [3, 19, 71], entities
performing surveillance [32,33], or entities performing censorship [21,57].

We consider an adversary that can collect traffic between the user and the DNS
recursive resolver (red dotted lines in Figure 1), and thus can link lookups to
a specific origin IP address. Such an adversary could be present on the users’
local network, near the resolver, or anywhere along the path (e.g., an ISP or
compromised network router).

Depending on her location, the adversary may or may not observe the subsequent
HTTP connection to the destination host. For instance, an adversary could be
located in an AS that lies between the user and the resolver —e.g., when using
third-party DNS resolvers like Quad9 rather than their ISP-provided one—, but
not between the user and the destination host. We performed measurements
from our university network to verify that this is the case in a non-negligible
number of cases. Furthermore, BGP hijacking attacks, which are becoming
increasingly frequent [1], can be used to selectively intercept paths to DoH
resolvers. In such cases, the adversary can only rely on DNS fingerprinting
to learn which webpages are visited by a concrete user for monitoring, or
censorship [32,33].

i
i

i
i

i
i

i
i

258 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

Query:
google.com?

Response:
172.217.168.4

Recursive
Resolver google

.com?

HTTP Requests & Responses

Authoritative
Servers

Destination
Host

Client

google.com?

Figure 1: DNS resolution: To visit www.google.com, a user queries the recursive
resolver for its IP. If the record is not cached, the recursive resolver queries
an authoritative resolver and forwards the response to the client. The client
uses the IP in the response to connect to the server via HTTP. We consider
an adversary placed between the client and the resolver (i.e., observes the red
dotted lines).

In the case of an adversary that also has access to the HTTP connection, one
could argue that the subsequent HTTP(S) connection reveals visited domains
even when encrypted. Fields such as the destination IP or the Server Name
Indicator (SNI) may reveal the visited domain to the adversary in the case
of TLS traffic. That could be further aggravated by HTTP flows emanating
without encryption from the same user machine [18]. However, with the
increasing prevalence of virtual hosting and Content Delivery Networks, and
the implementation of protocols such as IPv6 and TLS 1.3, determining the
destination domain of the connection without traffic analysis becomes more
difficult. Thus, data leaked by encrypted DNS becomes even more relevant.
While the adversary could perform traditional website fingerprinting, we show
that fingerprinting DoH achieves the same accuracy while requiring less volume
of data: our DoH traces are in average 5 times shorter in number of packets
than HTTPS traces for web traffic.

We assume that the adversary has access to encrypted DNS traffic traces
that are generated when the user visits a website via HTTP/S using DoH to
resolve the IPs of the resources. A DNS trace, which we also call DoH trace,
comprises the resolution of the visited website first-party domain, and the
subsequent resolutions for the resources contained in the website, e.g., images,
or scripts. For instance, for visiting Reddit, after resolving www.reddit.com,
the client would resolve domains such as cdn.taboola.com, doubleclick.net
and thumbs.redditmedia.com, among others.

i
i

i
i

i
i

i
i

DATA COLLECTION 259

We consider two different adversaries depending on their goals: first, monitoring
the browsing behavior of users, which we study in Section 5; and second
censoring what pages users visit, which we study in Section 7. We note that
there is a very important difference between these two goals regarding data
collection. Monitoring does not require the adversary to take any action based
on her observations. Thus, she can collect full traces to make their inferences
as accurate as possible. In contrast, censorship adversaries need to find out
which domain is being requested as fast as possible so as to interrupt the
communication, so they must act on partial traces.

4 Data collection

We collect traces for the top, middle, and bottom 500 webpages in Alexa’s
top million websites list on 26 March 2018 (1,500 webpages in total). We visit
each webpage in a round-robin fashion, obtaining up to 200 samples for every
webpage. For our open world analysis, we collect traces of an additional 5,000
webpages from the top domains of the Alexa list. We collected data during two
periods, from 26 August 2018 to 9 November 2018, and from 20 April 2019 to
14 May 2019. Data from these two periods is never mixed in the analysis

To collect the traces we set up Ubuntu 16.04 virtual machines with DoH clients
that send DNS queries to a public DoH resolver. We use Selenium7 (version
3.14.1) to automatically launch a full-fledged browser and visit a webpage from
our list and trigger the DNS lookups. We repeat this process for every webpage
in the list restarting the browser every time to ensure that the cache and profile
do not affect collection. We run tcpdump to capture the network traffic between
the DoH client and the resolver. We filter the traffic by destination port and IP
to obtain the final DoH trace.

To study the influence of various parameters on DoH traffic, we collect data
in different scenarios varying end user location and platform, DoH client and
resolver, and different DNS traffic analysis defenses. Table 1 provides an
overview of the collected datasets. To better understand the vulnerabilities
of DNS encryption we opted for having heterogenous experiments rather than
in-depth studies of few cases, resulting in the difference in samples among the
datasets. In the following sections, we use the Identifier provided in the second
column to refer to each of the datasets. Note that unless specified otherwise,
we use Cloudflare’s DoH client.

7https://www.seleniumhq.org/

i
i

i
i

i
i

i
i

260 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

Table 1: Overview of datasets.

Name Identifier # webpages # samples

Desktop (Location 1) LOC1 1,500 200
Desktop (Location 2) LOC2 1,500 60
Desktop (Location 3) LOC3 1,500 60

Raspberry Pi RPI 700 60
Firefox with Google resolver GOOGLE 700 60

Firefox with Cloudflare resolver CLOUD 700 60
Firefox with Cloudflare client CL-FF 700 60

Open World OW 5,000 3
DoH and web traffic WEB 700 60

DNS over Tor TOR 700 60
Pad only queries EDNS0-REQ 700 60

Pad both queries and responses EDNS0-FULL 700 60

Data curation. We curate the datasets to ensure that our results are not
biased by spurious errors in collection, or website behaviors that are bound to
generate classification errors unrelated to the characteristics of DNS traffic with
respect to traffic analysis attacks.

Concretely, we aim at identifying two cases. First, the cases in which different
domains generating the same exact DNS traces. These occur when webpages
redirect to other pages or to the same resource, and when web servers return
the same errors (e.g., 404 not found or 403 forbidden). Second, the case in
which websites change during collection for reasons other than those variations
due to their organic evolution. For instance, pages that go down during the
collection period. When this happens, the captured traces do not represent the
expected behavior of the page.

To identify these cases, we use the Chrome over Selenium crawler to collect the
HTTP request/responses, not the DNS queries responses, of all the pages in
our list in LOC1. Then we conduct two checks. First, we look at the HTTP
response status of the top level domain, i.e., the URL that is being requested
by the client. We identify the webpages that do not have an HTTP OK status.
These could be caused by a number of factors, such as pages not found (404),
anti-bot solutions, forbidden responses due to geoblocking [51] (403), internal
server errors (500), and so on. We mark these domains as conflicting. Second,
we confirm that the top level domain is present in the list of requests and
responses. This ensures that the page the client is requesting is not redirecting
the browser to other URLs. This check triggers some false alarms. For example,

i
i

i
i

i
i

i
i

WEBSITE FINGERPRINTING THROUGH DNS 261

a webpage might redirect to a country-specific version (indeed.com redirecting
to indeed.fr, results in indeed.com not being present in the list of requests);
or in domain redirections (amazonaws.com redirecting to aws.amazon.com).
We do not consider these cases as anomalies. Other cases are full redirections.
Examples are malware that redirect browser requests to google.com, webpages
that redirect to GDPR country restriction notices, or webpages that redirect to
domains that specify that the site is closed. We consider these cases as invalid
webpages and add them to our list of conflicting domains.

We repeat these checks multiple times over our collection period. We find that
70 webpages that had invalid statuses at some point during our crawl, and 16
that showed some fluctuation in their status (from conflicting to non-conflicting
or vice versa). We study the effects of keeping and removing these conflicting
webpages in Section 5.2.

5 Website fingerprinting through DNS

Website fingerprinting attacks enable a local eavesdropper to determine which
pages a user is accessing over an encrypted or/and anonyimized channel. Website
fingerprinting has been shown to be effective on HTTPS [31,49,52], OpenSSH
tunnels [30, 48], encrypted web proxies [37, 66] and VPNs [36], and even on
anonymous communications systems such as Tor [26,34,55,56,64,68–70].

Website fingerprinting exploits the fact that the size, timing, and order of TLS
packets are a reflection of a website’s content. As resources are unique to each
webpage, the traces identify the web. These patterns can be indirectly observed,
even if the traffic has been encrypted or anonymized.

Some of the patterns exploited by website fingerprinting are correlated with
patterns in DNS traffic. For instance, which resources are loaded and their
order, determines the order of the corresponding DNS queries. Thus, it is
likely that website fingerprinting can also be done on DNS traffic encrypted
with protocols such as DNS-over-HTTPS (DoH). In this paper we call DNS
fingerprinting the use of traffic analysis to identify the web page that generated
a trace of encrypted DNS traffic, i.e., website fingerprinting on encrypted DNS
traffic. In the following, whenever we do not explicitly specify whether the
target of website fingerprinting is DNS or HTTPS traffic, we refer to traditional
website fingerprinting on HTTPS traffic.

i
i

i
i

i
i

i
i

262 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

5.1 DNS traffic fingerprinting

As in website fingerprinting, we treat DNS fingerprinting as a supervised learning
problem: the adversary first collects a training dataset of network traces for a
set of pages, where the page (label) corresponding to a network trace is known.
The adversary extracts features from the network traces (e.g., lengths of network
packets) and trains a classifier to identify the page given a network trace. To
deploy the attack, the adversary collects traffic from a target user and feeds it
to the classifier to determine which page generated that traffic.

Traffic variability. In website fingerprinting, conditions such as networks
conditions and embedded third-party advertisements, introduce variance in
traffic traces sampled for the same website. Similarly, DNS traces also vary
over time. Thus, the adversary must collect multiple samples for each page in
order to obtain a robust representation of the page.

Some of this variability has similar origin to that of web traffic. For instance, the
dynamic nature of websites that results on varying the DNS lookups associated
with third-party embedded resources; the platform where the client runs, the
configuration of the DoH client, or the software using the client which may
vary the DNS requests (e.g., mobile versions of websites, or browsers’ use of
pre-fetching); or the effects of content localization and personalization, which
determines which resources are served depending on the location of the user, or
her actions (e.g., logged in or not).

Additionally, there are some factors specific to DNS traffic. Concretely, the
effect of the local resolver, which depending on the state of the cache may or
may not launch requests to the authoritative server, resulting in different traffic
patterns; or the DNS-level load-balancing (e.g., CDNs) which may provide
different IPs for a resource [20].

Feature engineering. DNS traffic presents unique challenges with respect to
web traffic for fingerprinting. Besides the extra traffic variability, DNS responses
are smaller than web resources. In most cases, DNS requests and responses fit
in one single TLS record, even if they are wrapped within HTTP requests like
in DoH. These particularities hinder the use of traditional website fingerprinting
features on DoH traffic.

As a matter of fact, in our preliminary experiments, we attempted to use features
and techniques already used in the web traffic fingerprinting literature [34,55].
Most of such features are based on aggregate metrics of traffic traces such as the
total number of packets, total bytes, and their statistics (e.g., average, standard
deviation). We found that these features are not as relevant for DoH traffic.
For instance, the accuracy of the k-fingerprinting attack [34], which includes

i
i

i
i

i
i

i
i

WEBSITE FINGERPRINTING THROUGH DNS 263

most website fingerprinting features considered in the literature, drops from
95% to just 74% when applied on DoH traffic (see Table 4).

We present a novel feature set that is specifically designed for encrypted DNS
traffic. The key idea is to represent traces as n-grams of TLS record lengths. The
intuition is that n-grams capture patterns in request-response size pairs which
are especially relevant for DoH, as TLS records often contain either a request
or a response. To some extent, they also capture the local order of the length
sequence. We take tuples of n consecutive TLS record lengths in the DoH traces
trace and count the number of their occurrences in each trace. For instance, for
the trace (−64, 88, 33,−33), the uni-grams are (−64), (88), (33), (−33) and the
bi-grams are (−64, 88), (88, 33), (33,−33). To the best of our knowledge, n-grams
had never been considered as features in the website fingerprinting literature.

We extend the n-gram representation to traffic bursts. Bursts are sequences of
consecutive packets in the same direction (either incoming or outgoing). Bursts
correlate with the number and order of resources embedded in the page and
thus are a good candidate feature for DoH traffic fingerprinting. Additionally,
they are more robust to small changes in order than individual sizes because
they aggregate several records in the same direction. We represent n-grams of
bursts by taking tuples burst lengths in the burst sequence. In the previous
example, the burst-length sequence of the trace above is (−64, 121,−33) and
the burst bi-grams are (−64, 121), (121,−33).

We experimented with uni-, bi- and tri-grams for both types of features.
We observed a marginal improvement in the classifier on using tri-grams at
a substantial cost on the memory requirements of the classifier. We also
experimented with the timing of packets but, as in website fingerprinting [69],
we found it unreliable due to its dependence on the state of the network than
on the content being served. Thus, they encode little information about the
visited website. In our experiments we use the concatenation of uni-grams and
bi-grams of both TLS record sizes and bursts as feature set.

Algorithm selection. After experimenting with different supervised
classification algorithms, we decided to use Random Forests (RF), which have
been demonstrated to be very effective for traffic analysis tasks [34,43].

Random forests (RF) are ensembles of simpler classifiers called decision trees.
Decision trees use a tree data structure to represent splits of the data: nodes
represent a condition on one of the data features and branches represent decisions
based on the evaluation of that condition. In decision trees, feature importance
in classification is measured with respect to how well they split samples with
respect to the target classes. The more skewed the distribution of samples
into classes is, the better the feature discriminates. Thus, a common metric

i
i

i
i

i
i

i
i

264 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

for importance is the Shannon’s entropy of this distribution. Decision trees,
however, do not generalize well and tend to overfit the training data. RFs
mitigate this issue by randomizing the data and features over a large amount of
trees, so that different subsets of features and data are used in each tree. The
final decision of the RF is an aggregate function on the individual decisions of
its trees. In our experiments we use 100 trees and a majority vote of the trees
as the aggregate function.

Validation. We evaluate the effectiveness of our classifier measuring the
Precision, Recall and F1-Score (Appendix A.1) in two scenarios typically used
in the web traffic analysis literature. A closed world, in which the adversary
knows the set of all possible webpages that users may visit; and an open-world,
in which the adversary only has access to a set of monitored sites, and the user
may visit webpages outside of this set.

We use 10-fold cross-validation in all of our experiments to measure biases related
to the overfitting of the classifier. Cross-validation is a standard methodology
to evaluate overfitting in machine learning. In cross-validation, the samples of
each class are divided in ten disjoint sets. The classifier is then trained on nine
of the sets and tested in the remaining one, proving ten samples of the classifier
performance on a set of samples on which it has not been trained on. This gives
an idea of how the classifier generalizes to unseen examples.

5.2 Evaluating the n-grams features

In this section we evaluate the effectiveness of our n-grams based website
fingerprinting attack on DNS traffic in the closed- and open-world scenarios, as
well as on HTTPS traffic.

Closed world We first study a closed world setting in which the adversary
knows the set of webpages visited by a user. Table 2 shows the classifier’s
performance on the LOC1 dataset. We observe that considering the 1,414
curated webpages (see Section 4) instead of all 1,500 webpages results in just
a 1% performance increase. Thus, in the remaining experiments we use the
complete dataset.

We notice that the Alexa ranking contains URLs that refer to regional versions
of he same service. For example, google.es and google.co.uk both point to
Google, but are considered as two separate webpages in our dataset. Even
though our classifier often misclassifies these cases, from an adversary’s point
of view, they can be considered equivalent classes. The third row in the table
shows that considering classifications within the equivalence class of a domain

i
i

i
i

i
i

i
i

WEBSITE FINGERPRINTING THROUGH DNS 265

Table 2: Classifier performance for LOC1 dataset (mean and standard deviation
for 10-fold cross validation).

Scenario Precision Recall F1-score

Curated traces 0.914± 0.002 0.909± 0.002 0.908± 0.002
Full dataset 0.904± 0.003 0.899± 0.003 0.898± 0.003

Combined labels 0.940± 0.003 0.935± 0.003 0.934± 0.003

as a success results in a performance improvement of 3-4%. See Figures 11
and 13 in the Appendix for the confusion graphs of this evaluation.

As pointed out by prior work on website fingerprinting, average metrics can
give an incomplete and biased view of the classification results [54]. This is
because the classifier’s performance may vary significantly between different
individual classes. We observe that this is also the case in DoH. Figure 2 depicts
individual classes in a scatterplot: each dot is a website and its color represents
the absolute difference between Precision and Recall: blue indicates 0 difference
and red indicates maximum difference (i.e., |Precision−Recall| = 1). We see
that, for some webpages the classifier obtains low Precision but high Recall
(red dots on the right of the Precision scatterplot) and, conversely, there are
pages with high Precision but low Recall (red dots on the right of the Recall
scatterplot). The latter case is very relevant for privacy since, every time the
adversary identifies one of these pages, she is absolutely sure her guess is correct.
In censorship, for instance, this enables the censor to block with certainty.

0 0.2 0.4 0.6 0.8 1
Metric value

F1-Score

Precision

Recall

M
et

ri
c

0.0

0.2

0.4

0.6

0.8

1.0

|P
re

ci
si

on
−

R
ec

al
l|

Figure 2: Performance per class in LOC1. Each dot represents a class and its
color the absolute difference between Precision and Recall (blue low, red high).

i
i

i
i

i
i

i
i

266 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

Adversary’s effort. To get an intuition about the data collection effort required
by an adversary, we study the classifier’s performance improvement with the
number of samples used for training . We see in Table 3 that after 20 samples
there are diminishing returns in increasing the number of samples per domain.
To minimize the data collection effort, we collected 60 samples per domain for
all our datasets except for the unmonitored websites in the open world, for
which we collected three samples per domain.

Table 3: Classifier performance for different number of samples in the LOC1
dataset averaged over 10-fold cross validation (standard deviations less than 1%).

Number of samples Precision Recall F1-score

10 0.873 0.866 0.887
20 0.897 0.904 0.901
40 0.908 0.914 0.909
100 0.912 0.916 0.913

We observe a difference with respect to prior work on web traffic analysis.
Website fingerprinting studies in Tor report more than 10% increase between 10
and 20 samples [69] and between 2% and 10% between 100 and 200 samples [61,
64]. In DNS, we see a small increase between 10 and 20 samples, and a negligible
difference after 20 samples.

We believe the reason why fingerprinting DoH requires fewer samples per domain
is DoH’s lower intra-class variance with respect to encrypted web traffic. One
reason for this difference could be the presence of advertisements, which are
an important source of intra-class variance in web traffic. They often change
across visits, varying the sizes of the resources associated to the advertisement.
However, the variance that advertisements add to DNS traffic might be more
limited. Some publishers rely on ad-networks for ad mediation and, in some
cases, the ad-network’s domain and not the advertiser’s will appear when
fetching all the advertisements in the page [22].

Open world. In the previous experiments, the adversary knew that the
webpage visited by the victim was within the training dataset. We now evaluate
the adversary’s capability to distinguish those webpages from other unseen
traffic. Following prior work [43, 45] we consider two sets of webpages, one
monitored and one unmonitored. The adversary’s goal is to determine whether
a test trace belongs to a page within the monitored set.

We train a classifier with monitored and unmonitored samples. Since it is not
realistic to assume that an adversary can have access to all unmonitored classes,
we create unmonitored samples using 5,000 webpages traces formed by a mix of

i
i

i
i

i
i

i
i

WEBSITE FINGERPRINTING THROUGH DNS 267

the OW and LOC1 datasets. We divide the classes such that 1% of all classes
are in the monitored set and 10% of all classes are used for training. We ensure
that the training dataset is balanced, i.e., it contains equal number of monitored
and unmonitored samples; and the test set contains an equal number of samples
from classes used in training and classes unseen by the classifier. To perform
cross-validation, we run 10 folds. To ensure that our classifier generalizes well
to any unseen data in every fold, we consider a different combination of the
monitored and unmonitored classes for training and testing.

To decide whether a target trace is monitored or unmonitored, we use a method
proposed by Stolerman et al. [65]. We assign the target trace to the monitored
class if and only if the classifier predicts this class with probability larger than
a threshold t, and to unmonitored otherwise. We show in Figure 3, the average
Precision-Recall ROC curve for the monitored class over 10 iterations varying
the discrimination threshold, t, from 0 to 0.99 in steps of 0.1. We also show
the random classifier, which indicates the probability of selecting the positive
class uniformly at random, and acts as a baseline. We see that when t = 0.8,
the classifier has an F1-score of ≈ 0.7. This result suggests that traffic analysis
is a true threat to DNS privacy.

Figure 3: Precision-Recall ROC curve for open world classification, for the
monitored class. The threshold, t, is varied from 0.0 to 0.99 in steps of 0.1
(standard deviation less than 1%).

Web traffic fingerprinting. Finally, we evaluate our n-grams features
suitability for performing traditional web traffic fingerprinting. We compare
them to the features set in the k-Fingerprinting attack, which includes a
comprehensive set of features used in the website fingerprinting literature [34].
For the comparison we scaled down the closed-world, but fixed the same number
of websites and samples per website between both feature sets. We used a
random forest with the same parameters as classification algorithm in both cases.

We use the WEB dataset to evaluate the performance of the classifiers on
only DoH traffic (DoH-only), only HTTPS traffic corresponding to web content
traffic (Web-only), and no filter (DoH+Web). As shown in Table 4, not only the

i
i

i
i

i
i

i
i

268 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

n-grams achieve better performance than the k-Fingerprinting features on the
DoH-only dataset but, surprisingly, they also outperform the k-Fingerprinting
features on the Web-only and DoH-Web datasets.

Table 4: F1-Score of the n-grams and k-Fingerprinting features for different
subsets of traffic: only DoH traffic (DoH-only), only HTTPS traffic
corresponding to web traffic (Web-only) and and the full trace (DoH+Web).

DoH-only Web-only DoH + Web

n-grams 0.87 0.99 0.88
k-Fingerprinting [34] 0.74 0.95 0.79

In both cases, an adversary who is able to intercept all communications, both
with the resolver and the web server, can improve the success of the attack
by adding web traffic, as shown by the increase in F1-Score between the first
and the last rows. However, such an adversary is better off by discarding DoH
traffic. We hypothesize that the added variability of DoH adds noise in small
sites increasing the classifier errors.

5.3 DNS Fingerprinting Robustness

In practice, the capability of the adversary to distinguish websites is very
dependent on environmental characteristics and differences in the setup while
collecting data [44]. To understand the impact of the environment on
DNS fingerprinting success we run experiments exploring three environmental
dimensions: time, space, and infrastructure.

Robustness over time

DNS traces vary due to the dynamism of webpage content and variations in
DNS responses (e.g., service IP changes because of load-balancing). We now
study how this variability impacts the performance of the classifier.

We consider collect data LOC1 for 10 weeks between the end of September to
the beginning of November 2018. We divide this period into five intervals, each
containing two consecutive weeks, and report in Table 5 the F1-score of the
classifier when we train the classifier on data from a single interval and use the
other intervals as test data (0 weeks old denotes data collected in November).
In most cases, the F1-score does not significantly decrease within a period of 4

i
i

i
i

i
i

i
i

WEBSITE FINGERPRINTING THROUGH DNS 269

weeks. Longer periods result in a significant drops – more than 10% drop in
F1-score when the training and testing are separated 8 weeks.

Table 5: F1-score when training on the interval indicated by the row and testing
on the interval in the column (standard deviations less than 1%). We use
20 samples per webpage (the maximum number of samples collected in all
intervals).

F1-score 0 weeks old 2 weeks old 4 weeks old 6 weeks old 8 weeks old

0 weeks old 0.880 0.827 0.816 0.795 0.745
2 weeks old 0.886 0.921 0.903 0.869 0.805
4 weeks old 0.868 0.898 0.910 0.882 0.817
6 weeks old 0.775 0.796 0.815 0.876 0.844
8 weeks old 0.770 0.784 0.801 0.893 0.906

This indicates that to obtain best performance, the adversary should collect data
at least once a month. However, it is unlikely that DNS traces change drastically.
To account for gradual changes, the adversary can perform continuous collection
and mix data across weeks. In our dataset, if we combine two- and three-
week-old samples for training; we observe a slight decrease in performance.
Thus, a continuous collection strategy can suffice to maintain the adversary’s
performance without requiring large periodic collection efforts.

Robustness across locations

DNS traces may vary across locations due to several reasons. First, DNS lookups
vary when websites adapt their content to specific geographic regions. Second,
popular resources cached by resolvers vary across regions. Finally, resolvers and
CDNs use geo-location methods for load-balancing requests, e.g., using anycast
and EDNS [53,62].

We collect data in three locations, two countries in Europe (LOC1 and LOC2)
and a third in Asia (LOC3). Table 6 (leftmost) shows the classifier performance
when crossing these datasets for training and testing. When trained and tested
on the same location unsurprisingly the classifier yields results similar to the
ones obtained in the base experiment. When we train and test on different
locations, the F1-score decreases between a 16% and a 27%, the greatest drop
happening for the farthest location, LOC3, in Asia.

Interestingly, even though LOC2 yield similar F1-Scores when cross-classified
with LOC1 and LOC3, the similarity does not hold when looking at Precision
and Recall individually. For example, training on LOC2 and testing on LOC1

i
i

i
i

i
i

i
i

270 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

results on around 77% Precision and Recall, but training on LOC1 and testing
on LOC2 yields 84% Precision and 65% Recall. Aiming at understanding
the reasons behind this asymmetry, we build a classifier trained to separate
websites that obtain high recall (top 25% quartile) and low recall (bottom 25%
quartile) when training with LOC1 and LOC3 and testing in LOC2. A feature
importance analysis on this classifier that LOC2’s low-recall top features have
a significantly lower importance in LOC1 and LOC2. Furthermore, we observe
that the intersection between LOC1 and LOC3’s relevant feature sets is slightly
larger than their respective intersections with LOC2. While it is clear that the
asymmetry is caused by the configuration of the network in LOC2, its exact
cause remains an open question.

Robustness across infrastructure

Influence of DoH Resolver. We study two commercial DoH resolvers,
Cloudflare’s and Google’s. Contrary to Cloudflare, Google does not provide
a stand-alone DoH client. To keep the comparison fair, we instrument a new
collection setting using Firefox in its trusted recursive resolver configuration
with both DoH resolvers.

Table 6: Performance variation changes in location and infrastructure (F1-score,
standard deviations less than 2%).

Location LOC1 LOC2 LOC3

LOC1 0.906 0.712 0.663
LOC2 0.748 0.908 0.646
LOC3 0.680 0.626 0.917

Resolver GOOGLE CLOUD

GOOGLE 0.880 0.129
CLOUD 0.862 0.885

Platform DESKTOP RPI

DESKTOP 0.8802 0.0003
RPI 0.0002 0.8940

Client CLOUD CL-FF LOC2

CLOUD 0.885 0.349 0.000
CL-FF 0.109 0.892 0.069
LOC2 0.001 0.062 0.908

Table 6 (center-left) shows the result of the comparison. As expected, training
and testing on the same resolver yields the best results. In particular, we note
that even though Google hosts other services behind its resolver’s IP and thus
DoH traffic may be mixed with the visited website’s traffic (e.g., if a web embeds
Google third-party) the classifier performs equally for both resolvers.

As in the location setting, we observe an asymmetric decrease in one of the
directions: training on GOOGLE dataset and attacking CLOUD results in 13%

i
i

i
i

i
i

i
i

WEBSITE FINGERPRINTING THROUGH DNS 271

F1-socre, while attacking GOOGLE with a classifier trained on CLOUD yields
similar results as training on GOOGLE itself.

Google Cloudflare

Sorted by Google’s

204

-280

358

-778

-863

-946

185

-932F
ea

tu
re

(T
L

S
re

co
rd

si
ze

)

Cloudflare Google

Sorted by Cloudflare’s

-208

-730

181

164

-662

168

214

178 0.000

0.004

0.008

0.012

0.016

0.020

F
ea

tu
re

Im
p

or
ta

n
ce

Figure 4: Top 15 most important features in Google’s and Cloudflare’s datasets.
On the left, features are sorted by the results on Google’s dataset and, on the
right, by Cloudflare’s.

To investigate this asymmetry we rank the features according their importance
for the classifiers. For simplicity, we only report the result on length unigrams,
but we verified that our conclusions hold when considering all features together.
Figure 4 shows the top-15 most important features for a classifier trained on
Google’s resolver (left) and Cloudflare’s (right). The rightmost diagram of each
column shows the importance of these features on the other classifier. Red tones
indicate high importance, and dark colors represent irrelevant features. Grey
indicates that the feature is not present.

We see that the most important features in Google are either not important
or missing in Cloudflare (the right column in left-side heatmap is almost gray).
As the missing features are very important, they induce erroneous splits early
in the trees, and for a larger fraction of the data, causing the performance
drop. However, only one top feature in the classifier trained on Cloudflare is
missing in Google, and the others are also important (right column in right-side
heatmap). Google does miss important features in Cloudflare, but they are of
little importance and their effect on performance is negligible.

Influence of user’s platform. We collect traces for the 700 top Alexa
webpages on a Raspberry Pi (RPI dataset) and an Ubuntu desktop (DESKTOP
dataset), both from LOC1. We see in Table 6 (center-right) that, as expected,
the classifier has good performance when the training and testing data come

i
i

i
i

i
i

i
i

272 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

from the same platform. However, it drops to almost zero when crossing the
datasets.

Aiming at understanding this drop, we take a closer look at the TLS record sizes
from both platforms. We found that TLS records in the DESKTOP dataset are
on average 7.8 bytes longer than those in RPI (see Figure 10 in Appendix A.3).
We repeated the cross classification after adding 8 bytes to all RPI TLS record
sizes. Even though the classifiers do not reach the base experiment’s performance,
we see a significant improvement in cross-classification F1-score to 0.614 when
training on DESKTOP and testing on RPI, and 0.535 when training on RPI
and testing on DESKTOP.

Influence of DNS client. Finally, we consider different client setups: Firefox’s
trusted recursive resolver or TRR (CLOUD), Cloudlflare’s DoH client with
Firefox (CL-FF) and Cloudflare’s DoH client with Chrome (LOC2). We collected
these datasets in location LOC2 using Cloudflare’s resolver.

Table 6 (rightmost) shows that the classifier performs as expected when trained
and tested on the same client setup. When the setup changes, the performance
of the classifier drops dramatically, reaching zero when we use different browsers.
We hypothesize that the decrease between CL-FF and LOC2 is due to differences
in the implementation of the Firefox’s built-in and Cloudflare’s standalone DoH
clients.

Regarding the difference when changing browser, we found that Firefox’ traces
are on average 4 times longer than Chrome’s. We looked into the unencrypted
traffic to understand this difference. We used a proxy to man-in-the-middle the
DoH connection between the client and the resolver8, obtaining the OpenSSL
TLS session keys with Lekensteyn’s scripts9. We use this proxy to decrypt DoH
captures for Firefox configured to use Cloudflare’s resolver, but we could not do
the same for Google. Instead, we man-in-the-middle a curl-doh client10, which
also has traces substantially shorter than Firefox. We find that Firefox, besides
resolving domains related to the URL we visit, also issues resolutions related to
OSCP servers, captive portal detection, user’s profile/account, web extensions,
and other Mozilla servers. As a consequence, traces in CL-FF and CLOUD
datasets are substantially larger and contain contain different TLS record sizes
than any of our other datasets. We conjecture that Chrome performs similar
requests, but since traces are shorter we believe the amount of checks seems to
be smaller than Firefox’s.

8https://github.com/facebookexperimental/doh-proxy
9https://git.lekensteyn.nl/peter/wireshark-notes

10https://github.com/curl/doh

i
i

i
i

i
i

i
i

WEBSITE FINGERPRINTING THROUGH DNS 273

Robustness Analysis Takeaways

The results in the previous section reveal that to obtain best results across differ-
ent configurations the adversary would need to train a classifier for each targeted
setting. Then, of course, she would need to be able to identify her victim’s
configuration. Kotzias et al. demonstrated that identifying client or resolver is
possible, for instance examining the IP (if the IP is dedicated to the resolver),
or fields in the ClientHello of the TLS connection (such as the the Server Name
Indication (SNI), cipher suites ordering, etc.) [47]. Even if in the future these
features are not available, we found that the characteristics of the traffic itself
are enough to identify a resolver. We built classifiers to distinguish resolver
and client based on the TLS record length. We can identify resolvers with 95%
accuracy, and we get no errors (100% accuracy) when identifying the client.

Regarding users’ platform, we see little difference between desktops, laptops,
and servers in Amazon Web Services. Only when the devices are as different as
a desktop and a constrained device the classifier’s accuracy drops.

Finally, our longitudinal analysis reveals that, even though webs change over
time these changes are not drastic. Therefore, it should not be hard for the
adversary to keep up with the changes by continuously collecting samples and
incorporating them to her training set.

Survivors and Easy Preys. We study whether there are websites that are
particularly good or bad at evading fingerprinting under all the configurations
evaluated in this section. We compute the mean F1-Score across all
configurations as an aggregate measure of the attack’s overall performance,
and analyze the skew of its distribution on individual websites. We plot the
CDF of the distribution of mean F1-scores over the websites in Figure 5. This
distribution is heavily skewed: there are up to 15% of websites that had an
F1-Score equal or lower than 0.5 and more than 50% of the websites have a
mean F1-Score equal or lower than 0.7.

We looked into the tails of this distribution and ranked sites by lowest mean F1-
Score and lowest standard deviation. On top of that ranking we have sites that
survived the attack in all configurations. Among the survivors we found Google
and errored sites that misclassify between each other. For other surviving sites,
after manual inspection we did not find a pattern in the websites structure
or the resource loads that explains why these sites survive. We leave a more
in-depth analysis of the survival of these sites for future work. In Appendix A.5
we list the top-10 sites in the tails of the distribution.

i
i

i
i

i
i

i
i

274 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

0 0.2 0.4 0.6 0.8 1
Mean F1-Score across all experiments

0

0.15

0.5

1

C
D

F

Figure 5: Cumulative Distribution Function (CDF) of the per-class mean
F1-Score.

6 DNS defenses against fingerprinting

In this section, we compare existing defenses aimed at preventing traffic analysis
attacks on encrypted DNS traces.

EDNS(0) Padding. EDNS (Extension mechanisms for DNS) is a specification
to increase the functionality of the DNS protocol [27]. One of the options is the
addition of padding [50] by both DNS clients and resolvers in order to prevent
size-correlation attacks on encrypted DNS. The recommended padding policy is
to pad DNS requests to the nearest multiple of 128 bytes and DNS responses
to the nearest multiple of 468 bytes [15]. Cloudflare’s DoH client provides
functionality to set EDNS(0) padding to DNS queries, but leaves the specifics
of the padding policy to the user. We modify the client source code to follow
the recommended padding strategy. Google’s specification also mentions EDNS
padding. However, we could not find any option to activate this feature.

When conducting our data collection we discovered that Cloudflare’s DoH
resolver does not implement server-side padding11. To overcome this issue we
set up an HTTPS proxy, mitmproxy, between the DoH client and the Cloudflare
resolver. The proxy intercepts responses from Cloudflare’s DoH resolver and
pads them to the nearest multiple of 468 bytes.

Below we evaluate the effectiveness against traffic analysis of solely padding
DNS queries (EDNS0-REQ), and padding both queries and responses (EDNS0-
FULL).

Constant padding. To fully understand the potential of padding, we also simulate
a setting in which all packets are padded to the same length (that of the longest

11We communicated this fact to Cloudflare. They replied on the 21st March that they
would add it on the next release. To date this is still not implemented

i
i

i
i

i
i

i
i

DNS DEFENSES AGAINST FINGERPRINTING 275

packet in the dataset, with a size of 825 bytes). This implies that the classifier
cannot exploit the TLS record size information.

DNS over Tor. We finally evaluate the use of Tor as a deterrent for traffic
analysis attack. We use Cloudflare’s DNS over Tor service as a target.

Results. Table 7 shows the classification results for all defenses. As expected,
padding only DNS requests, while reducing the F1-score, is not as effective as
padding both requests and responses. Padding both requests and responses,
which was intended to alleviate traffic analysis attacks, is not as effective as
expected. Padding all record sizes to the same size value greatly reduces the
F1-score. However, it is not as effective as using Tor, probably because some
order information of the records is still maintained, even if the size information
is no longer available to the classifier.

The success of Tor for DNS encrypted traffic is a huge difference with respect
to web traffic, where website fingerprinting obtains remarkable performance [34,
56, 64]. The reason is that DNS lookups and responses are fairly small, they
result in mostly one or two Tor cells which in turn materialize in few observed
TLS record sizes, making it difficult to find features unique to a page. We see a
similar effect in the number of TLS records per trace – TOR traces are generally
shorter and have less variance. Thus lengths-related features, which have been
proven to be very important in website fingerprinting, are of no help in the
DNS scenario. They only provide a weak 1% performance improvement. Web
traffic contains much bigger resources and as a result TLS traces present more
variability and are easier to fingerprint. much more information.

While DNS over Tor obtains the best results, when we look closely at the
misclassified webpages, we find that webpages get misclassified within six
clusters (see Figure 12 in the Appendix). We train a classifier considering all
domains within a cluster as equivalent classes. This classifier achieves ≈55%
accuracy, compared to 16% accuracy for random guessing. This means that
despite Tor’s protection the effective anonymity set for a webpage is much
smaller than the total number of webpages in the dataset. We leave as future
work a comprehensive analysis of what traffic characteristics contribute towards
the formation of these clusters.

Finally, we evaluate the trade-off between the defenses’ effectiveness and
their communication overhead. To compute the overhead generated by each
countermeasure, we collect 10 samples of 50 webpages with and without
countermeasures.

Figure 6 shows the total volume distribution (sent and received data) for all
cases. As expected, the EDNS0 padding (both REQ and FULL) add the least

i
i

i
i

i
i

i
i

276 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

Table 7: Classification results for countermeasures.

Method Precision Recall F1-score

EDNS0-REQ 0.710 ± 0.005 0.700 ± 0.004 0.691 ± 0.004
EDNS-FULL 0.465 ± 0.007 0.460 ± 0.008 0.442 ± 0.007

Constant Padding 0.070 ± 0.003 0.080 ± 0.002 0.066 ± 0.002
DNS over Tor 0.035 ± 0.004 0.037 ± 0.003 0.033 ± 0.003

overhead, but they also offer the least protection. DNS over Tor, in addition to
being more effective than constant padding, also has a smaller overhead. We
conclude that DNS repacketizing in addition to padding, as done in Tor, can be
a promising avenue to explore.

Figure 6: Total volume of traffic with and without countermeasures.

7 DNS encryption and censorship

DNS-based blocking is a wide-spread method of censoring access to web content.
Censors inspect DNS lookups and when they detect a blacklisted domain, they
either reset the connection or inject their own DNS response [67]. DoH encrypts
DNS by default, rendering content-based DNS blocking ineffective. If censors
want to continue restricting access to content by blocking DNS, DoH forces them
to block the resolver’s IP. While this would be very effective, some DoH resolvers,
such as Google’s, do not necessarily have a dedicated IP. Thus, blocking their
IP causes collateral damage that may be too expensive for the censor.

In this section, we study whether DoH traffic is really an effective countermeasure
to deter DNS-based censorship. A censor aims at blocking access to a number
of blacklisted domains. To achieve this goal, the censor needs to identify the
domain as soon as possible to prevent the user from downloading any content.
We aim at answering two questions: how long must the adversary observe the

i
i

i
i

i
i

i
i

DNS ENCRYPTION AND CENSORSHIP 277

connection to uniquely identify the domain? Second, based on the answer to
the first question, what strategy allows the censor to maximize censoring rates
while minimizing collateral damage?

7.1 Uniqueness of DoH traces

In order for the censor to be able to uniquely identify domains given DoH traffic,
the DoH traces need to be unique. In particular, to fulfill the censor’s goal the
first packets of the trace need to be unique. In the the following, we study the
uniqueness of DoH traffic when only the l first TLS records (or packets, for
short) have been observed.

Let us model the set of webpages in the world as a random variable W with
sample space ΩW ; and the set of possible network traces generated by those
websites as a random variable S with sample space ΩS . A website’s trace
w is a sequence of non-zero integers: (si)ni=1, si ∈ Z r {0}, n ∈ N, where si
represents the size (in bytes) of the i-th TLS record in the traffic trace and
its sign represents the direction – negative for incoming (DNS to client) and
positive otherwise.

We measure uniqueness using the conditional entropy H(W | Sl), defined as:

H(W | Sl) =
∑
∀o∈ΩSl

Pr[Sl = o]H(W | Sl = o),

where H(W | Sl = o) is the Shannon entropy of the probability distribution
Pr[W | Sl = o] describing the likelihood that the adversary guesses websites in
W given the observation o. This entropy measures distinguishability of traces
up to packet l. For instance, if every DoH trace started with a packet of a
different size, then the entropy H(W | S1) would be 0, i.e., sites would be
perfectly distinct from the first packet.

We show in Figure 7 the conditional entropy H(W | Sl) for different number of
webpages n in the LOC1 dataset. Every point is an average over 10 samples of
n webs from the dataset selected uniformly at random with replacement. The
shades represent the standard deviation across the 10 samples.

First, we observe that the conditional entropy decreases as the adversary observes
more packets. For all cases, we observe a drop of up to 4 bits within the first
four packets, and a drop below 0.1 bits after 20 packets (reaching zero when
n = 10, 100 sites). We note that as we consider more websites, the likelihood of
having two or more websites with identical traces increases. Thus, we observe a
slower decay in entropy.

i
i

i
i

i
i

i
i

278 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x = Number of observed packets

0

2

4

6

8

10

f(
x)

=
H

(W
|S

x
)

(b
it

s)

Num sites

1500

500

100

10

Figure 7: Conditional entropy H(W | Sl) given partial observations of DoH
traces for 10, 100, 500 and 1,500 webpages. Each data point is averaged over 10
samples.

A second observation is that the standard deviation is lower for small and
large l’s. The former is because the first packets correspond to the connection
establishment. Thus, they are similar for all webpages. The latter is because as
l increases, the traces become more dissimilar and thus the entropy is close to
zero regardless of which websites are sampled. We also observe larger variation
when few websites are considered. This is because we only have 1,500 webs.
As the number of websites per group increases, there is more overlap among
the groups used in the experiment. For 1,500 there is no variance because all
samples contain the full dataset.

When considering all 1,500 pages, the conditional entropy drops below 1 bit
after 15 packets. This means that after 15 packets have been observed, there
is one domain whose probability of having generated the trace is larger than
0.5. The average trace length in our dataset is 96 packets. Thus, 15 packets is
just 15% of the whole trace. This means that, on average, the adversary only
needs to observe the initial 15% of a DoH connection to determine a domain
with more confidence than taking a random guess between two domains.

Next, we investigate the cause behind the consistent entropy decrease within the
first four TLS records. We hypothesized that it might be caused by the fact that
one of these records contains the DoH query. Since the DoH protocol does not
specify padding, uniqueness in the domain length would be directly observable
in the trace. To verify our hypothesis we plot the frequency of the domain’s
and fourth record’s length in Figure 8. We discarded TLS incoming packets
– as they cannot contain a DoH query–, and TLS record sizes corresponding
to HTTP2 control messages, e.g., the size “33” which corresponds to HTTP2
acknowledgements. We also removed outliers for sizes that occurred 5% or

i
i

i
i

i
i

i
i

DNS ENCRYPTION AND CENSORSHIP 279

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 41 42

First-party domain name length (number of characters)

0.000

0.025

0.050

0.075

0.100

F
re

qu
en

cy

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 87 88 92 93

Fourth TLS record size (bytes)

0.000

0.025

0.050

0.075

0.100

F
re

qu
en

cy

Figure 8: Histograms for domain name length (top) and fourth TLS record
length (bottom) in the LOC1 dataset (normalized over the total sum of counts).

less times. We kept any size that could have contained a DoH query. For
instance, we kept size “88” even though it appears too often to only be caused
by DoH queries, as such packet size could be caused by queries containing
37-characters-long domain names.

The histogram of the sizes of the fourth TLS record in our dataset is almost
identical to the histogram of domain name lengths. This confirms our hypothesis
that the fourth packet often contains the first-party DoH query. We verified
that the constant difference of 51 bytes between the two histograms is the size
of the HTTPS header. We also observed that in some traces the DoH query is
sent earlier, explaining the entropy decrease starting after the second packet.

7.2 Censor DNS-blocking strategy

Given that traces are not completely unique, the censor must act on guesses.
When wrong, these guesses will cause collateral damage. Of course, the adversary
can increase her confidence in her guesses by waiting to observe more TLS
records. Thus, there is a trade-off between the collateral damage caused by
erred guesses and the amount of content that can be accessed by users. We now
discuss advantages and disadvantages of two strategies to censor a connection
based solely on encrypted DNS traffic. We assume that upon decision, the
censor uses standard techniques to block the connection [46].

High-confidence guesses. A possible strategy to minimize the likelihood of
collateral damage is to act only upon seeing the entropy going lower than one
bit. Following this strategy, the adversary would not block, on average, 15% of

i
i

i
i

i
i

i
i

280 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

the TLS records in the DoH connection. Those packets include the resolution
to the first-party domain. Thus, the client can download the content served
from this domain. Yet, the censor can still disrupt access to subsequent queried
domains (subdomains and third-parties). We note that quality degradation is a
strategy already used in the wild as a stealthy form of censorship [46].

As a response to this censorship strategy, the client could just create a new
connection for each DoH query so that the censor cannot distinguish DoH
connections belonging to the censored webpage visit or to others. At the cost
of generating more traffic for users and resolvers, this would force the censor
to drop all DoH connections originating from a user’s IP or throttle their DoH
traffic, causing more collateral damage.

Block on first DoH query. An alternative strategy is to drop the DoH
connection before the first DoH response arrives. This guarantees that the
client cannot access any content, not even index.html. However, it implies
that all domains that result on the same trace up to the first DoH query, i.e.,
all domains with same name length, would also be censored. We illustrate this
effect in Figure 9, where we show the entropy decrease for different pairs of sites.
We see that sites with different lengths (facebook.com and nytimes.com) are
distinguishable on the fourth packet. However, when domains have the same
name length the entropy only drops after the the DoH response, which is different
per domain, and hence distinguishable. We note that, even for cases when the
same service has different domain names with equal length (e.g., google.es
and google.be) the entropy eventually drops to zero. For these cases instead
of waiting, the adversary can also combine all equivalent pages in the same
class, which as shown in Section 5.2 increases the performance of the classifier.

0 4 6 8 12 16 20 24 28 32 36

x = Number of observed packets

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)

=
H

(W
|S

x
)

(b
it

s)

Pairs of sites

facebook.com, nytimes.com

google.com, reddit.com

t.co, t.me

google.es, google.be

Figure 9: Conditional entropy over the number of observed packets for pairs
of sites. The black bold vertical line corresponds to the median position of
the first incoming packet, likely to contain the first DoH response.

Finally, we quantify the collateral damage incurred when blocking the first DoH
query. The histogram in Figure 8 (top) represents the anonymity sets of websites
with same domain name length. For instance, when blocking nytimes.com, that

i
i

i
i

i
i

i
i

CONCLUSIONS 281

has length 11, one would also block other 111 websites. In our data, anonymity
set sizes are unevenly distributed. Only two websites have anonymity set one,
and thus can be blocked with no collateral damage. We also observe that popular
domains (according to the Alexa rank on the March 26) tend to have more
common domain name lengths. The Pearson correlation coefficient between
the domain name length and its Alexa rank for the top 1,000 domains is 0.49,
which indicates a moderate-to-high correlation. In particular, the first top-five
domains all lie in the 9-13 name length range, the most popular lengths. This is
because these lengths correspond to the average length of a word in English and
are the easiest to remember. Also, less popular domains often have a second- or
third-level domain name such as tumblr or Wordpress sites.

Internet traffic volume distribution over domains follows a power-law [29], i.e.,
the Alexa top domains accumulate a large fraction of the overall internet traffic.
Thus, blocking those domains not only has large collateral damage in terms of
number of webs, but also traffic volume. On the contrary, blacklisting unpopular
domains with uncommon lengths (in our dataset shorter than 8 or longer than 20
characters), not only blocks less websites, but also affect less overall traffic. The
correlation between name length and popularity deserves a deeper study, since
we show it is advantageous for some types of censors that tackle non-popular
domains such as sites trading drugs.

8 Conclusions

We have performed the first evaluation of DNS-over-HTTPS vulnerability to
traffic analysis. We have proposed a new set of features that characterize local
patterns in traces. We show that these features are also suitable for web traffic
fingerprinting, obtaining results comparable to the state of the art classifiers
on HTTPS.

Our experiments show that, encryption is not sufficient to protect users from
surveillance or DNS-based censorship. We also demonstrated that changes
in factors such as end-user location, local DNS resolver, or client’s platform
negatively impact the attack performance, but in many cases traffic analysis is
still pretty effective. Furthermore, it is easy for the adversary to recognize the
setting of her target and select the most adequate classifier.

In terms of defenses, we show that the recommended EDNS0 padding strategies
do not hinder traffic analysis. Repacketizing and padding, as done in anonymous
communications, is required to defeat traffic analysis. We hope that these results
serve to influence the evolution of standards on DNS privacy, and prompt main
providers to prioritize the addition of countermeasures in their next releases.

i
i

i
i

i
i

i
i

282 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

This seems nowadays out of their plans [12,14] even though they claim to strive
for providing privacy.

References

[1] Alerts about BGP hijacks, leaks, and outages. https://bgpstream.com/.
Accessed: 2019-05-13.

[2] Cloudflare DNS over HTTPS. https://developers.cloudflare.com/
1.1.1.1/dns-over-https/. Accessed: 2018-05-07.

[3] DNS Analytics. https://constellix.com/dns/dns-analytics/. Ac-
cessed: 2018-12-06.

[4] DNS-OARC: Domain Name System Operations Analysis and Research
Center. https://www.dns-oarc.net/tools/dsc. Accessed: 2018-11-26.

[5] DNS over Tor. https://developers.cloudflare.com/1.1.1.1/fun-
stuff/dns-over-tor/. Accessed: 2018-12-09.

[6] DNS Privacy - Current Work. https://dnsprivacy.org/wiki/display/
DP/DNS+Privacy+-+Current+Work. Accessed: 2018-12-26.

[7] DNS-STATS: ICANN’s IMRS DNS Statistics. https://
www.dns.icann.org/imrs/stats. Accessed: 2018-12-06.

[8] DNS Trends and Traffic. https://www.akamai.com/us/en/why-akamai/
dns-trends-and-traffic.jsp. Accessed: 2018-12-26.

[9] DNSCrypt. https://dnscrypt.info/. Accessed: 2018-12-09.

[10] DNSSEC: DNS Security Extensions. https://www.dnssec.net/. Accessed:
2018-12-09.

[11] Google DNS-over-HTTPS. https://developers.google.com/speed/
public-dns/docs/dns-over-https. Accessed: 2018-05-07.

[12] Google Public DNS position on DNS-over-HTTPS
(DoH). https://mailarchive.ietf.org/arch/msg/dnsop/
GE8v2Yz6zsl28clDvlshGh3rYlc. Accessed: 2019-05-13.

[13] iodine. https://code.kryo.se/iodine/. Accessed: 2019-05-13.

[14] Mozilla’s plans re: DoH. https://mailarchive.ietf.org/arch/msg/doh/
po6GCAJ52BAKuyL-dZiU91v6hLw. Accessed: 2019-05-13.

https://bgpstream.com/
https://developers.cloudflare.com/ 1.1.1.1/dns-over-https/
https://developers.cloudflare.com/ 1.1.1.1/dns-over-https/
https://constellix.com/dns/dns-analytics/
https://www.dns-oarc.net/tools/dsc
https://developers.cloudflare.com/1.1.1.1/fun-stuff/dns-over-tor/
https://developers.cloudflare.com/1.1.1.1/fun-stuff/dns-over-tor/
https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+-+Current+Work
https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+-+Current+Work
https://www.dns.icann.org/imrs/stats
https://www.dns.icann.org/imrs/stats
https://www.akamai.com/us/en/why-akamai/dns-trends-and-traffic.jsp
https://www.akamai.com/us/en/why-akamai/dns-trends-and-traffic.jsp
https://dnscrypt.info/
https://www.dnssec.net/
https://developers.google.com/speed/public-dns/docs/dns-over-https
https://developers.google.com/speed/public-dns/docs/dns-over-https
https://mailarchive.ietf.org/arch/msg/dnsop/GE8v2Yz6zsl28clDvlshGh3rYlc
https://mailarchive.ietf.org/arch/msg/dnsop/GE8v2Yz6zsl28clDvlshGh3rYlc
https://code.kryo.se/iodine/
https://mailarchive.ietf.org/arch/msg/doh/po6GCAJ52BAKuyL-dZiU91v6hLw
https://mailarchive.ietf.org/arch/msg/doh/po6GCAJ52BAKuyL-dZiU91v6hLw

i
i

i
i

i
i

i
i

REFERENCES 283

[15] Padding Policies for Extension Mechanisms for DNS (EDNS(0)). https:
//tools.ietf.org/html/rfc8467. Accessed: 2019-05-10.

[16] Spamhaus. https://www.spamhaus.org/zen/. Accessed: 2019-05-13.

[17] Specification of DNS over Dedicated QUIC Connections. https:
//www.ietf.org/id/draft-huitema-quic-dnsoquic-05.txt. Accessed:
2018-12-09.

[18] The NSA files decoded. https://www.theguardian.com/us-news/the-
nsa-files. Accessed: 2019-05-13.

[19] Use DNS data to identify malware patient zero. https://docs.splunk.com/
Documentation/ES/5.2.0/Usecases/PatientZero. Accessed: 2018-12-06.

[20] Mario Almeida, Alessandro Finamore, Diego Perino, Narseo Vallina-
Rodriguez, and Matteo Varvello. Dissecting dns stakeholders in mobile
networks. In Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies, pages 28–34. ACM, 2017.

[21] Anonymous. The collateral damage of internet censorship by dns injection.
SIGCOMM Comput. Commun. Rev., 42(3):21–27, 2012.

[22] Muhammad Ahmad Bashir and Christo Wilson. Diffusion of user tracking
data in the online advertising ecosystem. 2018.

[23] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of
statistical mechanics: theory and experiment, 2008(10):P10008, 2008.

[24] S. Bortzmeyer. DNS Privacy Considerations. RFC 7626, 2015.

[25] Stephane Bortzmeyer. DNS privacy considerations. 2015.

[26] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching
from a distance: Website fingerprinting attacks and defenses. In ACM
Conference on Computer and Communications Security (CCS), pages 605–
616. ACM, 2012.

[27] J. Damas, M. Graff, and P. Vixie. Extension mechanisms for dns (edns(0)).
RFC 6891, RFC Editor, April 2013.

[28] Selena Deckelmann. DNS over HTTPS (DoH) – Testing on
Beta. https://blog.mozilla.org/futurereleases/2018/09/13/dns-
over-https-doh-testing-on-beta, 2018. Accessed: 2018-12-30.

https://tools.ietf.org/html/rfc8467
https://tools.ietf.org/html/rfc8467
https://www.spamhaus.org/zen/
https://www.ietf.org/id/draft-huitema-quic-dnsoquic-05.txt
https://www.ietf.org/id/draft-huitema-quic-dnsoquic-05.txt
https://www.theguardian.com/us-news/the-nsa-files
https://www.theguardian.com/us-news/the-nsa-files
https://docs.splunk.com/Documentation/ES/5.2.0/Usecases/PatientZero
https://docs.splunk.com/Documentation/ES/5.2.0/Usecases/PatientZero
https://blog.mozilla.org/futurereleases/2018/09/13/dns-over-https-doh-testing-on-beta
https://blog.mozilla.org/futurereleases/2018/09/13/dns-over-https-doh-testing-on-beta

i
i

i
i

i
i

i
i

284 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

[29] Luca Deri, Simone Mainardi, Maurizio Martinelli, and Enrico Gregori.
Graph theoretical models of dns traffic. In 9th International Wireless
Communications and Mobile Computing Conference (IWCMC), pages 1162–
1167. IEEE, 2013.

[30] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton.
Peek-a-Boo, I still see you: Why efficient traffic analysis countermeasures
fail. In IEEE Symposium on Security and Privacy (S&P), pages 332–346.
IEEE, 2012.

[31] Roberto Gonzalez, Claudio Soriente, and Nikolaos Laoutaris. User profiling
in the time of https. In Proceedings of the 2016 Internet Measurement
Conference, pages 373–379. ACM, 2016.

[32] Christian Grothoff, Matthias Wachs, Monika Ermert, and Jacob
Appelbaum. NSA’s MORECOWBELL: Knell for DNS. Unpublished
technical report, 2017.

[33] Saikat Guha and Paul Francis. Identity trail: Covert surveillance using
DNS. In Privacy Enhancing Technologies Symposium (PETS). Springer,
2007.

[34] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable
website fingerprinting technique. In USENIX Security Symposium, pages
1–17. USENIX Association, 2016.

[35] Dominik Herrmann, Christian Banse, and Hannes Federrath. Behavior-
based tracking: Exploiting characteristic patterns in DNS traffic.
Computers & Security, 2013.

[36] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website
fingerprinting: attacking popular privacy enhancing technologies with the
multinomial Naïve-Bayes classifier. In ACM Workshop on Cloud Computing
Security, pages 31–42. ACM, 2009.

[37] Andrew Hintz. Fingerprinting websites using traffic analysis. In Privacy
Enhancing Technologies Symposium (PETS), pages 171–178. Springer,
2003.

[38] P. Hoffman and P. McManus. Dns queries over https (doh). RFC 8484,
RFC Editor, October 2018.

[39] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman.
Specification for dns over transport layer security (tls). RFC 7858, RFC
Editor, May 2016.

i
i

i
i

i
i

i
i

REFERENCES 285

[40] G. Huston. DOH! DNS over HTTPS explained. https://blog.apnic.net/
2018/10/12/doh-dns-over-https-explained/. Accessed: 2018-12-26.

[41] Geoff Huston. DOH! DNS over HTTPS explained. https:
//labs.ripe.net/Members/gih/doh-dns-over-https-explained, 2018.
Accessed: 2018-12-27.

[42] Basileal Imana, Aleksandra Korolova, and John S. Heidemann.
Enumerating Privacy Leaks in DNS Data Collected above the Recursive.
2017.

[43] Rob Jansen, Marc Juarez, Rafael Galvez, Tariq Elahi, and Claudia Diaz.
Inside job: Applying traffic analysis to measure tor from within. In Network
& Distributed System Security Symposium (NDSS). Internet Society, 2018.

[44] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel
Greenstadt. A critical evaluation of website fingerprinting attacks. In
ACM Conference on Computer and Communications Security (CCS), pages
263–274. ACM, 2014.

[45] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew
Wright. Toward an efficient website fingerprinting defense. In European
Symposium on Research in Computer Security (ESORICS), pages 27–46.
Springer, 2016.

[46] Sheharbano Khattak, Tariq Elahi, Laurent Simon, Colleen M Swanson,
Steven J Murdoch, and Ian Goldberg. SoK: Making sense of censorship
resistance systems. Proceedings on Privacy Enhancing Technologies
(PoETS), 2016(4):37–61, 2016.

[47] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G
Paterson, Narseo Vallina-Rodriguez, and Juan Caballero. Coming of
age: A longitudinal study of tls deployment. In Proceedings of the Internet
Measurement Conference, pages 415–428. ACM, 2018.

[48] Marc Liberatore and Brian Neil Levine. "Inferring the source of
encrypted HTTP connections". In ACM Conference on Computer and
Communications Security (CCS), pages 255–263. ACM, 2006.

[49] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky K. C.
Chang, and Roberto Perdisci. HTTPOS: Sealing information leaks with
browser-side obfuscation of encrypted flows. In Network & Distributed
System Security Symposium (NDSS). IEEE Computer Society, 2011.

[50] A. Mayrhofer. The edns(0) padding option. RFC 7830, RFC Editor, May
2016.

https://blog.apnic.net/2018/10/12/doh-dns-over-https-explained/
https://blog.apnic.net/2018/10/12/doh-dns-over-https-explained/
https://labs.ripe.net/Members/gih/doh-dns-over-https-explained
https://labs.ripe.net/Members/gih/doh-dns-over-https-explained

i
i

i
i

i
i

i
i

286 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

[51] Allison McDonald, Matthew Bernhard, Luke Valenta, Benjamin
VanderSloot, Will Scott, Nick Sullivan, J Alex Halderman, and Roya
Ensafi. 403 forbidden: A global view of cdn geoblocking. In Proceedings of
the Internet Measurement Conference 2018, pages 218–230. ACM, 2018.

[52] Brad Miller, Ling Huang, Anthony D Joseph, and J Doug Tygar. I know
why you went to the clinic: Risks and realization of https traffic analysis.
In Privacy Enhancing Technologies Symposium (PETS), pages 143–163.
Springer, 2014.

[53] John S Otto, Mario A Sánchez, John P Rula, and Fabián E Bustamante.
Content delivery and the natural evolution of DNS: remote dns trends,
performance issues and alternative solutions. In Proceedings of the 2012
Internet Measurement Conference, pages 523–536. ACM, 2012.

[54] Rebekah Overdorf, Marc Juarez, Gunes Acar, Rachel Greenstadt,
and Claudia Diaz. How unique is your onion? an analysis of the
fingerprintability of tor onion services. In ACM Conference on Computer
and Communications Security (CCS), pages 2021–2036. ACM, 2017.

[55] Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan
Pennekamp, Klaus Wehrle, and Thomas Engel. Website fingerprinting
at internet scale. In Network & Distributed System Security Symposium
(NDSS), pages 1–15. IEEE Computer Society, 2016.

[56] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.
Website fingerprinting in onion routing based anonymization networks.
In ACM Workshop on Privacy in the Electronic Society (WPES), pages
103–114. ACM, 2011.

[57] Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick Feamster, Nick Weaver,
and Vern Paxson. Global measurement of dns manipulation. In USENIX
Security Symposium. USENIX, page 22, 2017.

[58] The DNS Privacy Project. Initial Performance Measurements (Q1 2018).
https://dnsprivacy.org/wiki/pages/viewpage.action?pageId=
14025132, 2018. Accessed: 2018-12-27.

[59] The DNS Privacy Project. Initial Performance Measurements (Q4 2018).
https://dnsprivacy.org/wiki/pages/viewpage.action?pageId=
17629326, 2018. Accessed: 2018-12-27.

[60] T. Reddy, D. Wing, and P. Patil. Dns over datagram transport layer
security (dtls). RFC 8094, RFC Editor, February 2017.

https://dnsprivacy.org/wiki/pages/viewpage.action?pageId=14025132
https://dnsprivacy.org/wiki/pages/viewpage.action?pageId=14025132
https://dnsprivacy.org/wiki/pages/viewpage.action?pageId=17629326
https://dnsprivacy.org/wiki/pages/viewpage.action?pageId=17629326

i
i

i
i

i
i

i
i

REFERENCES 287

[61] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and
Wouter Joosen. Automated website fingerprinting through deep learning.
In Network & Distributed System Security Symposium (NDSS). Internet
Society, 2018.

[62] John P Rula and Fabian E Bustamante. Behind the curtain: Cellular dns
and content replica selection. In Proceedings of the 2014 Conference on
Internet Measurement Conference, pages 59–72. ACM, 2014.

[63] Haya Shulman. Pretty bad privacy: Pitfalls of DNS encryption. In
Proceedings of the 13th Workshop on Privacy in the Electronic Society.
ACM, 2014.

[64] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. Deep
fingerprinting: Undermining website fingerprinting defenses with deep
learning. In ACM Conference on Computer and Communications Security
(CCS), pages 1928–1943. ACM, 2018.

[65] Ariel Stolerman, Rebekah Overdorf, Sadia Afroz, and Rachel Greenstadt.
Classify, but verify: Breaking the closed-world assumption in stylometric
authorship attribution. In IFIP Working Group 11.9 on Digital Forensics.
IFIP, Springer, 2014.

[66] Qixiang Sun, Daniel R Simon, Yi-Min Wang, Wilf Russel, Venkata N.
Padmanabhan, and Lili Qiu. Statistical identification of encrypted web
browsing traffic. In IEEE Symposium on Security and Privacy (S&P),
pages 19–30. IEEE, 2002.

[67] Michael Carl Tschantz, Sadia Afroz, Anonymous, and Vern Paxson. Sok:
Towards grounding censorship circumvention in empiricism. In IEEE
Symposium on Security and Privacy (S&P), pages 914–933. IEEE, 2016.

[68] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg.
Effective attacks and provable defenses for website fingerprinting. In
USENIX Security Symposium, pages 143–157. USENIX Association, 2014.

[69] Tao Wang and Ian Goldberg. Improved Website Fingerprinting on Tor.
In ACM Workshop on Privacy in the Electronic Society (WPES), pages
201–212. ACM, 2013.

[70] Tao Wang and Ian Goldberg. On realistically attacking tor with website
fingerprinting. In Proceedings on Privacy Enhancing Technologies (PoETS),
pages 21–36. De Gruyter Open, 2016.

[71] Nicholas Weaver, Christian Kreibich, and Vern Paxson. Redirecting dns
for ads and profit. In FOCI, 2011.

i
i

i
i

i
i

i
i

288 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

[72] Davis Yoshida and Jordan Boyd-Graber. Using confusion graphs to
understand classifier error. In Proceedings of the Workshop on Human-
Computer Question Answering, pages 48–52, 2016.

[73] Earl Zmijewski. Turkish Internet Censorship Takes a New Turn. https:
//dyn.com/blog/turkish-internet-censorship, 2014. Accessed: 2018-
12-06.

A Appendices

A.1 Performance metrics.

We use standard metrics to evaluate the performance of our classifier: Precision,
Recall and F1-Score. We compute these metrics per class, where each class
represents a webpage. We compute these metrics on a class as if it was a “one
vs. all” binary classification: we call “positives” the samples that belong to that
class and “negatives” the samples that belong to the rest of classes. Precision is
the ratio of true positives to the total number of samples that were classified as
positive (true positives and false positives). Recall is the ratio of true positives to
the total number of positives (true positives and false negatives). The F1-score
is the harmonic mean of precision and recall.

A.2 Estimation of probabilities

In this section we explain how we have estiamted the probabilities for for the
entropy analysis in Sections 5 and 7.

Basic definitions

A traffic trace or just trace is a finite sequence of non-zero integers: (si)ni=1, si ∈
Z r {0}, n ∈ N, where si represents the size (in bytes) of the i-th packet in the
traffic trace. In an abuse of notation, we may drop the subindices and denote a
traffic trace simply as s.

We assume there is a fix closed-world of m websites: w1, . . . , wm. For each
website wi, we have sampled ki traces, following the methodology described in
this paper. We use set notation to denote that: wi = {si,1, . . . , si,ki

}, where
si,j is the j-th trace sampled for website wi.

We define the anonymity set of a trace s as a multiset:

https://dyn.com/blog/turkish-internet-censorship
https://dyn.com/blog/turkish-internet-censorship

i
i

i
i

i
i

i
i

APPENDICES 289

A(s) := {wms(w)},

where ms(w) is the multiplicity of a website w in A(s). The multiplicity is a
function defined as the number of times that trace s occurrs in w.

Probability Space

We define sample spaces: ΩW := {wi : i = 1, . . . ,m} and ΩS := {si,j : i =
1, . . . ,m, j = k1, . . . , km} and their corresponding random variables W and S,
respectively.

As an example of a probability based on these two random variables, the proba-
bilitiy of website w given that we have observed a trace s is: P (W = w | S = o).

If we want to express probabilities of incomplete observations, e.g., we have
observed up to l packets with l < n, we can define the sample space ΩSl

:=
{(si)li=1 | l < n}. ΩSl

denotes samples of length-l subsequences, i.e., the first l
packet sizes of traces in ΩS . Let Sl be the corresponding random variable for ΩSl

.

Then, we can express the probability for having observed l packets of a trace
as: P (W = w | Sl = o).

Conditional entropies

The probability P (W = w | S = o) tell only how likely website w is if we
have observed trace s. However, this probability may be similar for several
sites – think of the case in which A(s) contains those sites. In that case, the
adversary may incur in false positives. We are interested in the distribution of
P (W | S = o) and its entropy H(W | S = o). The entropy captures how much
information the observation of s reveals about websites. For instance, in the
case of similar probabilities for all sites, the entropy is going to be high, while
if the probabilities for all sites except one are 0, it reaches its maximum – i.e.,
A(s) contains one site.

In particular, the entropy H(W | Sl) is interesting for a censor-type of adversary,
who wants to drop connections for a blacklist of domains in real-time. This
entropy decreases as l → n and thus we would like to know for which l the
entropy is sufficiently low, according to a certain threshold, for the censor
to take a decision. The smaller the l, the faster the censor can block the
site. In particular, we are interested in the packet that contains the first DNS
request as that would allow the censor to block the response for the first-party

i
i

i
i

i
i

i
i

290 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

domain. In addition, there is a trade-off between the threshold on the entropy
and the collateral damage of blocking because an entropy H(W | Sl) higher
than zero means there are some chances of false positives and thus blocking of
non-censored sites.

We define the anonymity set of a trace s as a multiset:

A(s) := {wms(w)},

where ms(w) is the multiplicity of a website w in A(s). The multiplicity is a
function defined as the number of times that trace s occurrs in w.

The probability Pr[W = w | Sl = o] can be worked out using Bayes. For
instance, for website w,

Pr[W = w | Sl = o] = Pr[W = w] Pr[Sl = o |W = w]
m∑
i=1

Pr[W = wi] Pr[Sl = o |W = wi]
(1)

We assume the distribution of priors is uniform, i.e., the probability of observing
a website is the same for all websites: Pr[wi] = Pr[wj] ∀i, j.

We acknowledge that this is an unrealisitc assumption but we provide the
mathematical model to incorporate the priors in case future work has the data
to estimate them.

Assuming uniform priors allows us to simplify the Bayes rule formula since we
can factor out Pr[W = wi] in Equation 1

Regarding the likelihoods of observing the traces given a website, we can use
the traffic trace samples in our dataset as observations to estimate them:

Pr[Sl = o |W = wi] ≈
ms(wi)
ki

Since we have a large number of samples for all the sites, we can fix the same
sample size for all sites: ki = kj ∀i, j. A fixed sample size allows us to factor
out ki in our likelihood estimates and, thus, the posterior can be estimated
simply as:

i
i

i
i

i
i

i
i

APPENDICES 291

Pr[W = w | Sl = o] ≈ ms(w)
m∑
i=1

ms(wi)
= ms(w)
|A(s)|

.

That is the multiplicity of website w divided by the size of the s’s anonymity
set, which can be computed efficiently for all w and s using vectorial operations.

A.3 Extra results on attack robustness

Table 8: Performance when training on the resolver indicated by the row and
testing on the resolver indicated by the column (standard deviations less than
1%).

Precision GOOGLE CLOUD

GOOGLE 0.886 0.386
CLOUD 0.881 0.890

Recall GOOGLE CLOUD

GOOGLE 0.881 0.083
CLOUD 0.860 0.886

Table 9: Performance when training on the platform indicated by the row and
testing on the platform indicated in the column (standard deviation less than
1% for same platform and less than 0.1% for cross-platform.

Precision DESKTOP RPI

DESKTOP 0.8848 0.0003
RPI 0.0003 0.8970

Recall DESKTOP RPI

DESKTOP 0.8816 0.0008
RPI 0.0010 0.8945

Figure 10: Distribution of user’s sent TLS record sizes in platform experiment.

i
i

i
i

i
i

i
i

292 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

Table 10: Improvement in cross platform performance when removing the shift
(standard deviation less than 1%).

Train Test Precision Recall F-score

DESKTOP RPI 0.630 0.654 0.614
RPI DESKTOP 0.552 0.574 0.535

Table 11: Performance when training on the client setups indicated by the row
and testing on the configuration indicated by the column (standard deviations
less than 2%).

Precision CLOUD CL-FF LOC2

CLOUD 0.890 0.646 0.000
CL-FF 0.257 0.896 0.089
LOC2 0.001 0.090 0.911

Recall CLOUD CL-FF LOC2

CLOUD 0.886 0.267 0.001
CL-FF 0.080 0.893 0.073
LOC2 0.004 0.069 0.909

A.4 Confusion graphs

We have used confusion graphs to understand the errors of the classifier.
Confusion graphs are the graph representation of confusion matrices. They allow
to easily visualize large confusion matrices by representing misclassifications as
directed graphs. Confusion graphs have been used in website fingerprinting [54]
and other classification tasks to understand classifier error [72].

Figures 11, 12 and 13 show the classification errors in the form of confusion
graphs for some of the experiments presented in Section 5. The graphs were
drawn using Gephi, a software for graph manipulation and visualization. Nodes
in the graph are domains and edges represent misclassifications between domains.
The edge source is the true label of the sample and the destination is the domain
that the classifier confused it with. The direction of the edge is encoded clockwise
in the curvature of the edge. Node size is proportional to the node’s degree
and nodes are colored according to the community they belong to, which is
determined by the Lovain community detection algorithm [23].

i
i

i
i

i
i

i
i

APPENDICES 293

mesopelagic.tumblr.com

mr-kyles-sluts.tumblr.com

bbc.co.uk

bbc.com

mrsnatasharomanov.tumblr.com

pensandplanners.tumblr.com

headwaydigital.com

spotify.com

millertrailersales.net

midcoastconnector.org

injuredcandy.com

google.com

ksanner.tumblr.com
matzapiski.si

mega.nz

salesforce.com

force.com

peterbodnar-onlinemixing.com

planinsko-drustvo-cerkno.si

indoorvinylfloor.org

mozilla.org

reddit.com

theepochtimes.com

discogs.com
baidu.com

morningbabe2018.tumblr.com

samsung.com

millsriver.org

Figure 11: Confusion graph for the misclassifications in LOC1 that happen
in more than one fold of the cross-validation and have different domain name
length. We observe domains that belong to the same CDN (e.g., tumblr) or
belong to the same entity (e.g., BBC, Salesforce). For others, however, the
cause of the misclassification remains an open question.

Figure 12: Confusion graph for all Tor misclassifications. We did not plot the
labels to remove clutter. We observe that domains in one a “petal” of the graph
tend to classify between each other.

i
i

i
i

i
i

i
i

294 DOES ENCRYPTED DNS IMPLY PRIVACY? A TRAFFIC ANALYSIS PERSPECTIVE

A.5 Survivors and easy preys

Table 12: Top-10 with highest-mean and lowest-variance F1-Score

Alexa Rank Mean F1-Score Stdev F1-Score Domain name

777 0.95 0.08 militaryfamilygiftmarket.com
985 0.95 0.08 myffpc.com
874 0.95 0.08 montrealhealthygirl.com
712 0.95 0.08 mersea.restaurant
1496 0.95 0.08 samantha-wilson.com
1325 0.95 0.08 nadskofija-ljubljana.si
736 0.95 0.08 michaelnewnham.com
852 0.95 0.08 mollysatthemarket.net
758 0.95 0.08 midwestdiesel.com
1469 0.95 0.08 reclaimedbricktiles.blogspot.si

Table 13: Top-10 sites with lowest-mean and lowest-variance F1-Score

Alexa Rank Mean F1-Score Stdev F1-Score Domain name

822 0.11 0.10 mjtraders.com
1464 0.11 0.08 ravenfamily.org
853 0.14 0.09 moloneyhousedoolin.ie
978 0.14 0.17 mydeliverydoctor.com
999 0.17 0.10 myofascialrelease.com
826 0.17 0.11 mm-bbs.org
1128 0.17 0.10 inetgiant.com
889 0.18 0.14 motorize.com
791 0.18 0.15 mindshatter.com
1193 0.20 0.14 knjiznica-velenje.si

Table 14: Top-10 sites with highest-variance F1-Score

Alexa Rank Mean F1-Score Stdev F1-Score Domain name

1136 0.43 0.53 intothemysticseasons.tumblr.com
782 0.43 0.53 milliesdiner.com
766 0.43 0.53 mikaelson-imagines.tumblr.com
1151 0.43 0.53 japanese-porn-guidecom.tumblr.com
891 0.42 0.52 motorstylegarage.tumblr.com
909 0.42 0.52 mr-kyles-sluts.tumblr.com
918 0.44 0.52 mrsnatasharomanov.tumblr.com
1267 0.52 0.49 meander-the-world.com
238 0.48 0.49 caijing.com.cn
186 0.48 0.48 etsy.com

i
i

i
i

i
i

i
i

APPENDICES 295

m
es
op
el
ag
ic
.tu
m
bl
r.c
om

m
r-k
yl
es
-s
lu
ts
.tu
m
bl
r.c
om

m
jtr
ad
er
s.
co
m

m
yd
es
kl
og
.c
om

go
og
le
.ro

go
og
le
.c
h

go
og
le
.c
om

.a
r

go
og
le
.c
om

.v
n

go
og
le
.c
om

.b
r

go
og
le
.c
om

.c
o

m
on
ke
yb
ro
ke
r.c
om

th
ep
ira
te
ba
y.
or
g

go
og
le
.c
om

.s
g

go
og
le
.c
om

.p
h

go
og
le
.c
o.
uk

go
og
le
.c
o.
ve

da
rre

st
.c
om

aj
kz
d9
h.
co
m

am
az
on
.e
s

am
az
on
.it

go
og
le
.s
e

go
og
le
.a
e

m
in
gs
hi
im
.c
om

go
og
le
.c
o.
nz

go
og
le
.c
o.
jp

ga
rte
nx
l.s
i

ftl
po
ol
.c
om

m
ea
le
as
y.
co
m

m
et
ha
do
ne
.u
s

m
b-
es
ig
n.
co
m

po
rta
l-f
1.
si

go
og
le
.c
om

.u
a

go
og
le
.c
om

.p
k

go
og
le
.c
om

.p
e

go
og
le
.c
om

.n
g

go
og
le
.d
k

go
og
le
.p
l

h8
vz
w
pv
.c
om

go
og
le
.fr

in
do
or
vi
ny
lfl
oo
r.o
rg

nu
de
ru
ss
ia
np
us
sy
.c
om

dy
tt8
.n
et

m
pt
cs
.o
rg

m
in
ds
ha
tte
r.c
om

ra
ve
nf
am

ily
.o
rg

go
og
le
.c
a

m
ot
or
iz
e.
co
m

bi
lld
es
k.
co
m zi
pp
ys
ha
re
.c
om

ks
rg
-s
is
ka
.n
et

m
ya
pi
.p
w

ke
to
s.
si

gi
rls
4u
20
15
.tu
m
bl
r.c
om

go
og
le
.c
om

.m
x

go
og
le
.c
o.
th

go
og
le
.c
o.
ao

go
og
le
.s
k

ol
im
pi
ja
.c
om

m
us
ic
ne
t.c
om

m
cf
ad
de
ns
ba
llp
ar
k.
co
m

se
ar
ch
-p
riv
ac
y.
on
lin
e

m
yc
le
ar
w
at
er
lib
ra
ry
.c
om

m
or
ga
nc
ou
nt
ya
ud
ito
r.o
rg

go
og
le
.c
om

.a
u

go
og
le
.k
z

go
og
le
.g
r

pe
tre
.s
i

ni
ko
n.
si

os
dr
av
lje
.s
i

go
og
le
.c
om

.e
g

pm
s-
lj.
si

m
lb
pa
.o
rg

go
og
le
.c
om

.tw

go
og
le
.d
z

go
og
le
.c
l

m
m
-b
bs
.o
rg

im
ai
le
r.s
i

m
oo
se
pa
ge
s.
or
g

pa
la
no
k.
or
g.
ua

go
og
le
.n
l

go
og
le
.b
e

m
et
ro
pc
s.
m
ob
i

m
ey
er
sg
az
.o
rg

m
yb
en
ef
ite
xp
re
ss
.c
om

m
ye
as
yp
ay
fin
an
ce
.c
om

go
og
le
.b
g

go
og
le
.ru

ro
tte
nt
om

at
oe
s.
co
m

m
jg
ei
ge
r.g
ith
ub
.io

go
og
le
.d
e

el
24
ur
.c
om

m
en
he
dz
.c
om

in
je
kt
or
.s
i

lh
18
2.
at

m
in
ix
.u
s

go
og
le
.c
om

.s
a

go
og
le
.c
om

.k
w

go
og
le
.c
om

.tr

go
og
le
.c
om

.h
k

ko
m
un
al
a-
nm

.s
i

kr
m
ax
44
.d
e

m
ai
ta
ic
at
am

ar
an
.n
et

m
an
ha
tta
nc
om

ed
y.
co
m

am
az
on
.fr

m
oj
di
.o
rg

go
og
le
.c
o.
il

go
og
le
.c
z

go
og
le
.a
t

go
og
le
.e
s

m
ar
tin
so
n-
co
ffe
e.
co
m

m
et
ro
co
nv
en
tio
ns
.c
om

go
og
le
.rs

al
iy
un
.c
om

eb
c.
ne
t.t
w

go
og
le
.ie

go
og
le
.a
z

m
illc
ap
.c
om

go
og
le
.n
o

ex
dy
ns
rv
.c
om

ba
nv
en
ez
.c
om

m
od
er
nf
re
qu
en
cy
.n
et

m
ic
hi
ga
nc
ic
hl
id
.c
om

pe
tro
lb
lo
g.
co
m

go
og
le
.it

be
t3
65
.c
om

na
jc
en
a.
si

pi
xn
et
.n
et

ju
ra
na
.c
om

m
ak
er
st
oo
lw
or
ks
.c
om

m
ic
ro
so
fto
nl
in
e.
co
m

m
er
ca
do
liv
re
.c
om

.b
r

m
er
ca
do
lib
re
.c
om

.a
r

in
et
gi
an
t.c
om

ne
xt
op
tim

.c
om

go
og
le
.c
o.
id

go
og
le
.c
o.
za

liv
ej
ou
rn
al
.c
om

m
cd
ow

el
lm
ls
.c
om

pr
of
i-s
ho
p.
si

ki
be
rp
ip
a.
or
g

go
og
le
.p
t

hi
cp
m
10
.c
om

m
ai
ne
ph
ila
nt
hr
op
y.
or
g

m
ar
in
ep
ar
ts
eu
ro
pe
.c
om

go
og
le
.c
o.
in

m
er
ca
do
lib
re
.c
om

.m
x

go
og
le
.h
u

go
og
le
.lk

m
un
ci
em

al
l.c
om

ne
w
sp
ro
fin
.c
om

ol
x.
ua gz

g.
si

m
es
gr
ou
p.
co
m

go
og
le
.fi

ch
in
ad
ai
ly
.c
om

.c
n

m
ow

er
pa
rtp
ro
s.
co
m

ol
x.
pl

ho
m
ed
ep
ot
.c
om

m
as
sb
ay
cu
.o
rg

go
og
le
.c
n

fir
ef
ox
.c
om

m
oz
illa

.o
rg

je
re
m
ia
hl
ee
.c
om

kn
jiz
ni
ca
-v
el
en
je
.s
i

m
yd
el
iv
er
yd
oc
to
r.c
om

m
at
tle
ea
nd
te
dl
ee
.c
om

ib
oo
ki
ng
ho
te
l.n
et

m
is
aj
ay
.n
o-
ip
.b
iz

m
ad
am

er
ic
an
ne
tw
or
k.
co
m

m
id
am

er
ic
ab
cr
es
cu
e.
or
g

m
ed
po
d1
01
.c
om

go
og
le
.c
o.
kr

m
id
w
es
tfl
ea
dh
.o
rg

fra
nc
ew

ed
di
ng
pl
an
ne
r.c
om

m
ar
xa
nd
ph
ilo
so
ph
y.
or
g.
uk

pe
ns
an
dp
la
nn
er
s.
tu
m
bl
r.c
om

m
or
ni
ng
ba
be
20
18
.tu
m
bl
r.c
om

ja
vn
ip
re
vo
z.
si

ko
vi
nt
ra
de
.c
om

m
ov
ie
fli
xx
.w
ee
bl
y.
co
m

he
rv
is
lig
a.
w
ee
bl
y.
co
m

pe
te
rb
od
na
r-o

nl
in
em

ix
in
g.
co
m

pl
an
in
sk
o-
dr
us
tv
o-
ce
rk
no
.s
i

fo
to
le
va
c-
sh
op
.s
i

ge
rry
w
illi
am

s.
ne
t

m
ol
on
ey
ho
us
ed
oo
lin
.ie

m
yo
fa
sc
ia
lre
le
as
e.
co
m

m
ya
ut
od
j.c
om

m
ou
ve
m
en
t-a
tta
ch
es
.fr

m
er
m
ai
dh
un
te
r.c
om

m
ar
ke
tn
ew

sl
et
te
rs
.c
om

ba
id
u.
co
m

rra
-z
k.
si

ip
ro
m
.n
et

vo
c.
co
m
.c
n

m
et
am

at
.s
i

pe
er
pl
ay
s.
co
m

m
as
te
rs
rx
.c
om

m
en
us
lo
w
er
bu
ck
s.
co
m

po
te
pu
h-
trg
ov
in
e.
si

ok
ra
s-
sm

.s
i

m
al
lig
e.
or
g

m
ar
ks
ta
rc
.n
o-
ip
.b
iz

ou
tb
ra
in
.c
om

m
yc
an
va
s.
ny
c

in
za
po
sl
ite
v.
ne
t

ko
ro
sk
en
ov
ic
e.
si

m
ar
ch
m
us
ic
m
od
er
ne
.o
rg

m
la
rm
eu
.w
ee
bl
y.
co
m

lid
ija
k.
w
ee
bl
y.
co
m

ve
lo
ce
cd
n.
co
m

ad
dr
op
le
t.c
om

hd
r-p

ho
to
gr
ap
hy
.c
om

m
an
ol
ab
.o
rg

v3
rjv
tt.
co
m

m
ym

ai
lp
an
el
.c
om

je
sp
er
al
se
d.
co
m

go
da
dd
y.
co
m

po
ljc
an
e.
si

pr
av
no
sv
et
ov
an
je
.in
fo

w
ile
y.
co
m

tw
im
g.
co
m

go
od
re
ad
s.
co
m

w
ik
ip
ed
ia
.o
rg

ga
rg
ys
er
ve
r.d
uc
kd
ns
.o
rg

cl
ou
df
ro
nt
.n
et

po
ve
jid
ej
o.
co
m

uo
l.c
om

.b
r

os
w
eg
o.
or
g

ltn
.c
om

.tw

m
in
ne
to
nk
a.
k1
2.
m
n.
us

gl
ob
al
ar
ta
ffa
irs
.o
rg

m
ed
ia
so
ni
c.
ca

m
as
sa
ge
pl
an
et
.c
om

m
at
tie
sa
us
tin
.c
om

re
gu
la
r.s
i

m
ym

ai
nl
in
eh
om

e.
co
m

w
as
hi
ng
to
np
os
t.c
omna

lo
zb
en
oz
la
to
.c
om

ko
ln
er
-o
dv
et
ni
k.
si

ps
i-w

eb
.o
rg

fri
v.
co
m

us
ps
.c
om

m
el
pa
o.
gi
th
ub
.io

m
in
in
gs
et
up
.c
om

hu
ey
sk
itc
he
n.
co
m
.a
u

sa
m
su
ng
.c
om

m
ills
riv
er
.o
rg

m
ck
es
so
nb
ps
.c
om

bp
.b
lo
gs
po
t.c
om

m
er
ch
an
ts
of
go
lf.
co
m

iz
be
ris
am

.o
rg

m
ee
ge
ni
us
.c
om

m
al
ig
al
ag
o.
co
m

bi
ng
.c
om

ru
la
.n
et op
ar
a.
si

flo
ra
lp
ar
kf
d.
co
m

m
id
hu
ds
on
m
ls
.c
om

so
go
u.
co
m

ig
re
6.
co
m

m
en
ss
tu
di
es
.o
rg

lo
vs
ka
-z
ve
za
.s
i

m
rth
om

se
n.
de

go
er
.s
i

m
ry
l.g
a

kr
ka
.s
i

js
kd
.s
i

irc
tc
.c
o.
in

xf
in
ity
.c
om

ro
bo
la
b.
si

m
m
-k
on
to
.s
i

m
zr
g.
co
m

ch
as
e.
co
m

jo
bs
in
vi
en
na
.c
om

m
al
l-c
en
tra
l.c
om

m
vr
co
m
m
un
ity
.c
om

kl
em

en
bo
bn
ar
.c
om

fla
sh
da
ily
ne
w
s.
co
m

m
an
si
pr
in
ts
ho
p.
co
m

w
ei
bo
.c
om

am
az
on
.c
o.
uk

am
az
on
.c
o.
jp

m
oj
as
ol
a.
si

gm
w
.c
n

m
et
ro
b.
si

m
w
.o
rg
.a
u

m
ag
na
ty
re
s.
co
m

m
at
he
w
si
nc
.c
om

m
od
rij
an
.s
i

he
ad
w
ay
di
gi
ta
l.c
om

og
re
j.s
e

sa
nj
e.
si

m
ic
ha
el
tra
in
in
g.
co
m

m
el
is
sa
ca
ta
ne
se
.c
om

m
ille

rtr
ai
le
rs
al
es
.n
et

m
id
co
as
tc
on
ne
ct
or
.o
rg

in
ju
re
dc
an
dy
.c
om

go
og
le
.c
om

du
ck
du
ck
go
.c
om

ne
xu
sm

od
s.
co
m

no
vi
gl
as
.e
u

m
ed
ia
so
lu
tio
ns
co
rp
.c
om

ga
le
rij
af
ot
og
ra
fij
a.
si

m
on
ac
oc
oa
ch
.c
om m
ira
ba
id
ev
i.o
rg

m
yc
on
ne
ct
ic
ar
e.
co
m

hm
p.
si

m
et
.s
i

ja
zk
uh
am

.s
i

m
ar
io
nc
ou
nt
yc
le
rk
.o
rg

go
og
le
us
er
co
nt
en
t.c
om

m
ng
ol
f.o
rg

eb
ay
.it eb
ay
.d
e

re
dd
it.
co
m

th
ee
po
ch
tim

es
.c
om

ap
ar
at
.c
om

zi
llo
w
.c
om

pa
tri
a.
or
g.
ve

of
ac
an
ad
a.
ca

rs
g.
si

m
ym

at
ur
el
ov
e.
co
m

os
-s
ko
flj
ic
a.
si

lo
ss
ue
no
s.
co
m

m
et
al
da
ys
.n
et

17
ok
.c
om

m
id
w
es
td
ie
se
l.c
om

on
lin
et
v.
si

ko
le
kt
or
.s
i

cd
ni
ns
ta
gr
am

.c
om

m
at
ch
co
nt
ac
t.n
et

pe
ca
na
c-
ra
ku
n.
si

os
-s
en
tje
rn
ej
.s
i

m
yk
m
ar
t.c
om

vi
ce
.c
om se
tn
.c
om

cn
zz
.c
om

jb
-s
lo
.c
om

m
od
el
bo
at
ra
ci
ng
.c
o.
uk

ge
oc
ac
he
r.s
i

m
ob
iliz
er
es
cu
e.
co
m

ep
r.i
t

up
or
ni
a.
co
m

be
st
bu
y.
co
m

m
at
bu
rn
.c
om

lp
t.s
i

sp
ot
ify
.c
om

la
dy
ly
ric
s.
tk

rb
gr
af
ik
a.
co
m

m
in
im
um

.s
i

m
ym

ai
lp
or
ta
l.n
et

m
er
ce
de
s-
be
nz
.s
i

tri
bu
nn
ew

s.
co
m

m
ag
ge
eb
on
d.
co
m

el
em

en
tu
m
.s
i

ke
en
bu
ll.
co
m

bb
c.
co
.u
k

bb
c.
co
m

ra
st
lin
e.
co
m

fa
ce
bo
ok
.c
om

w
ik
ih
ow

.c
om

ka
ta
.s
i

m
eg
a.
nz

m
ar
ga
re
te
ve
s.
co
m

di
gi
ta
ld
sp
.c
om lie
2a
ny
on
e.
co
m

ok
us
po
do
br
em

.s
i

m
ig
ht
yi
st
he
lo
rd
.c
om

in
fo
-s
lo
ve
ni
ja
.s
i

m
in
ec
ra
fts
ee
ds
.c
o

ta
ob
ao
.c
om

hu
dl
oo
k.
si

gu
rm
an
ce
k.
si

kl
ep
et
12
3.
si

te
le
gr
am

.o
rg

m
ad
se
ns
1.
co
m

do
ub
le
pi
m
ps
sl
.c
om

sp
ot
sc
en
er
ed
.in
fo

m
ik
ad
om

ar
tia
la
rts
.n
l

m
an
da
rin
re
ad
in
g.
co
m

na
ra
vn
e-
je
di
.s
i

m
at
za
pi
sk
i.s
i

cn
n.
co
m

m
ye
tli
cp
ol
ic
y.
co
m

m
yc
as
hf
lo
w
m
gr
.n
et

je
w
is
h-
co
m
m
un
ity
.s
i

m
ai
ns
tre
et
pi
zz
a.
co
m

itr
ac
ke
r-d

as
hc
am

.d
e

si
na
.c
om

.c
n

he
im
da
ll.
si

ra
di
on
et
.s
i

m
ile
hi
gh
co
m
ic
s.
co
m

m
or
el
.s
i

po
ho
d.
si

m
ob
ile
ar
q.
co
m

gl
ob
al
no
.o
rg

k6
18
.c
n

m
ae
st
ro
.s
i

ge
ne
si
s-
bi
ke
s.
eu

id
ea
lo
.e
u

ia
m
.s
i

m
ed
ic
at
io
ns
.c
om

ip
ba
.c
om

.p
k

m
oj
ag
os
til
na
.c
om

ex
os
rv
.c
om

flo
ris
t.s
i

m
si
ga
.c
om

m
et
ho
di
ca
ld
ec
ep
tio
n.
co
m

et
to
da
y.
ne
t

m
rs
na
ta
sh
ar
om

an
ov
.tu
m
bl
r.c
om

m
ot
oh
ou
st
on
.c
om

so
hu
.c
om

13
37
x.
to

lin
ks
hr
in
k.
ne
t

m
ra
do
je
vi
c.
co
m

sl
id
es
ha
re
.n
et

iq
iy
i.c
om

zh
ih
u.
co
m

m
ax
im
tra
k.
co
m

m
ol
in
ar
os
.c
om

ne
tfl
ix
.c
om

m
og
an
16
8.
cn

ks
an
ne
r.t
um

bl
r.c
om

ad
ob
e.
co
m

as
os
.c
om

sa
le
sf
or
ce
.c
om

fo
rc
e.
co
m

m
ag
ic
lin
en
.c
om

el
ek
tro
pr
om

.s
i

ra
ku
te
n.
co
.jp

od
bo
jk
a.
si

m
ye
ta
p.
or
g

di
sc
og
s.
co
m

m
cl
da
z.
or
g

m
ar
ke
tb
ay
.c
o.
za

m
id
m
ic
hi
ga
n.
ne
tfre

e.
fr

ja
z-
in
-ti
.s
i

th
re
ad
sp
he
re
.b
id

m
in
dg
am

e-
pr
od
uc
tio
ns
.c
om

ly
ric
st
im
e.
co
m

da
ily
m
ai
l.c
o.
uk

ac
cu
w
ea
th
er
.c
om

ci
12
3.
co
m

m
ya
ys
on
lin
e.
co
m

Figure 13: Confusion graph for all misclassifications in LOC1. We observe
clusters of domains such as Google and clusters of domains that have the same
name length. Interestingly, the only inter-cluster edge we observe is between
one of the Google clusters and a cluster that mostly contains Chinese domains.

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Bibliography

[1] Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan,
A., and Diaz, C. The Web never forgets: Persistent tracking mechanisms
in the wild. In ACM Conference on Computer and Communications Security
(CCS) (2014), ACM, pp. 674–689.

[2] Acar, G., Juárez, M., Nikiforakis, N., Diaz, C., Gürses, S. F.,
Piessens, F., and Preneel, B. FPDetective: Dusting the web for
fingerprinters. In ACM Conference on Computer and Communications
Security (CCS) (2013), ACM, pp. 1129–1140.

[3] Cherubin, G., Hayes, J., and Juarez, M. "Website fingerprinting
defenses at the application layer". In Proceedings on Privacy Enhancing
Technologies (PoETS) (2017), De Gruyter, pp. 168–185.

[4] Jansen, R., Juarez, M., Galvez, R., Elahi, T., and Diaz, C. Inside
job: Applying traffic analysis to measure tor from within. In Network &
Distributed System Security Symposium (NDSS) (2018), Internet Society.

[5] Juarez, M., Afroz, S., Acar, G., Diaz, C., and Greenstadt, R. A
critical evaluation of website fingerprinting attacks. In ACM Conference on
Computer and Communications Security (CCS) (2014), ACM, pp. 263–274.

[6] Juarez, M., Imani, M., Perry, M., Diaz, C., and Wright, M.
Toward an efficient website fingerprinting defense. In European Symposium
on Research in Computer Security (ESORICS) (2016), Springer, pp. 27–46.

[7] Juarez, M., and Torra, V. A Self-Adaptive Classification for the
Dissociating Privacy Agent. In PST2013, the eleventh annual conference
on Privacy, Security and Trust (2013), pp. 44–50.

[8] Juarez, M., and Torra, V. Towards a privacy agent for information
retrieval. International Journal of Intelligent Systems 28, 6 (2013), 606–622.

297

i
i

i
i

i
i

i
i

298 BIBLIOGRAPHY

[9] Juarez, M., and Torra, V. Dispa: An intelligent agent for private web
search. In Advanced Research in Data Privacy, G. Navarro-Arribas and
V. Torra, Eds., vol. 567 of Studies in Computational Intelligence. Springer
International Publishing, 2015, pp. 389–405.

[10] Overdorf, R., Juarez, M., Acar, G., Greenstadt, R., and Diaz,
C. How unique is your onion? an analysis of the fingerprintability of tor
onion services. In ACM Conference on Computer and Communications
Security (CCS) (2017), ACM, pp. 2021–2036.

[11] Rimmer, V., Preuveneers, D., Juarez, M., Van Goethem, T., and
Joosen, W. Automated website fingerprinting through deep learning.
In Network & Distributed System Security Symposium (NDSS) (2018),
Internet Society.

[12] Siby, S., Juarez, M., Diaz, C., Vallina-Rodriguez, N., and
Troncoso, C. Does encrypted DNS imply privacy? A traffic analysis
perspective. Submitted to the USENIX Security Symposium (2020).

[13] Sirinam, P., Imani, M., Juarez, M., and Wright, M. Deep
fingerprinting: Undermining website fingerprinting defenses with deep
learning. In ACM Conference on Computer and Communications Security
(CCS) (2018), ACM, pp. 1928–1943.

i
i

i
i

i
i

i
i

Curriculum

Marc graduated in Computer Engineering and Mathematics from Universitat
Autònoma de Barcelona. He arrived to KU Leuven in February 2013 as an
ERASMUS student and joined the PhD program at COSIC in the Autumn
of the same year. Before starting his PhD, he was a research assistant and
junior software engineer in the Research Institute on Artificial Intelligence of
the Spanish Council for Scientific Research (IIIA-CSIC) in Bellaterra.

299

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING

COSIC
Kasteelpark Arenberg 10, bus 2452

B-3001 Leuven
marc.juarez@kuleuven.be

https://securewww.esat.kuleuven.be/cosic/

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	I Design and Evaluation of Website Fingerprinting Techniques
	Introduction
	Summary of contributions
	Other contributions
	Structure

	Preliminaries
	The Onion Router (Tor)
	Tor Browser
	Tor Onion services

	Threat Model
	Research assumptions

	Statistical classification
	Model selection
	Prediction error
	The base rate fallacy

	Website fingerprinting
	Attacks
	Defenses

	Contributions
	Realistic evaluation of WF techniques
	The impact of the base rate fallacy
	Disparity of results not captured by averages

	Identification and assessment of new threats
	Middle-node WF adversaries
	DNS-fingerprinting adversary

	Engineering and analysis of traffic features
	Design and development of defenses
	WTF-PAD
	ALPaCA and LLaMA

	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography

	II Publications
	List of Publications
	A Critical Evaluation of Website Fingerprinting Attacks
	Introduction
	Website Fingerprinting
	Model
	Assumptions

	Evaluation
	Datasets
	Data collection
	Methodology
	Time
	Multitab browsing
	Tor Browser Bundle versions
	Network
	The importance of false positives

	Classify-Verify
	Evaluation and result

	Modeling the adversary's cost
	Conclusion and future work
	References
	Appendices
	List of used crawls

	Toward an Efficient Website Fingerprinting Defense
	Introduction
	Website Fingerprinting (WF)
	Defenses

	Adaptive Padding
	Design Overview
	WTF-PAD
	Inter-arrival time distributions
	Tuning mechanism

	Evaluation
	Data
	Methodology
	Results

	Realistic Scenarios
	Open-world evaluation
	Multi-tab evaluation

	Discussion and future work
	Conclusion
	References
	Appendices
	WTF-PAD Histograms

	Website Fingerprinting Defenses at the Application Layer
	Introduction
	Threat model
	Related work
	Attacks
	Defenses

	Defenses
	ALPaCA
	LLaMA

	Methodology
	Data collection
	Data analysis

	Evaluation
	P-ALPaCA & D-ALPaCA evaluation
	LLaMA evaluation

	Discussion and future work
	Conclusion
	References
	Appendices
	Onion service target experiments

	KDE distributions

	How Unique is your Onion? An Analysis of the Fingerprintability of Tor Onion Services
	Introduction
	Background and related work
	Attacks against Tor
	State-of-the-art attacks
	Feature analysis for website fingerprinting
	Website fingerprinting defenses

	Data collection and processing
	Processing crawl data

	Analysis of website classification errors
	Classifier accuracy
	Classifier variance
	Comparison of website classification errors
	Ensemble classifier
	Sources of classification error
	Confusion graph

	Network-level feature analysis
	Methodology
	Network-level feature results

	Site-level feature analysis
	Methodology
	Results

	Implications for Onion Service design
	Limitations and future work
	Conclusion
	References
	Appendices
	Site level features
	Confusion Graph for CUMUL

	Inside Job: Applying Traffic Analysis to Measure Tor from Within
	Introduction
	Background
	Tor
	Onion Service protocol
	Stream isolation
	Traffic fingerprinting

	Requirements and ethical research
	Requirements
	Ethical Considerations

	Advantages of the middle of the path
	Exit
	Guard
	Middle

	Circuit purpose and position fingerprinting
	Methodology
	Feature extraction
	Training
	Results

	Onion Service fingerprinting
	Evaluating website fingerprinting
	Methodology
	Ethics
	Results
	Precision is in the detail

	Onion Service popularity measurement
	Measurement goals and methodology
	Measurement tools
	PrivCount deployment
	Research ethics and user safety
	Results
	Discussion

	Related work
	Tor website fingerprinting attacks
	Tor website fingerprinting defenses
	Onion site enumeration

	Conclusion
	Lessons learned
	Future work

	References

	Does encrypted DNS imply Privacy? A Traffic Analysis Perspective
	Introduction
	Background and related work
	Problem statement
	Data collection
	Website fingerprinting through DNS
	DNS traffic fingerprinting
	Evaluating the n-grams features
	DNS Fingerprinting Robustness

	DNS defenses against fingerprinting
	DNS encryption and censorship
	Uniqueness of DoH traces
	Censor DNS-blocking strategy

	Conclusions
	References
	Appendices
	Performance metrics.
	Estimation of probabilities
	Extra results on attack robustness
	Confusion graphs
	Survivors and easy preys

	Curriculum

