2013 Eleventh Annual Conference on Privacy, Security and Trust (PST)

A Self-Adaptive Classification
for the Dissociating Privacy Agent

Marc Juarez
IITA - Institut d’Investigacié en Intel-ligencia Artificial
CSIC - Consejo Superior de Investigaciones Cientificas
Campus de la UAB, 08193 Bellaterra, Catalonia, Spain.
Email: mjuarez@iiia.csic.es

Abstract—This paper describes an extension of the Dissoci-
ating Privacy Agent (DisPA), which is a Privacy Enhancement
Technology (PET) for web search. It is implemented as an add-
on for Firefox that acts like a proxy between the user and the
search engine. A fundamental part of DisPA is the classification
of queries into a set of categories. Particularly, the taxonomy
of the Open Directory Project (ODP) is used for this purpose.
In this paper we briefly recall the internal operations of the
agent, discuss the drawbacks of the current model and propose
an improvement to overcome them.

I. INTRODUCTION

Web search service providers, commonly known as search
engines, are the main actors on the Internet today, as they
are the fastest and most effective way of finding information.
They log data about users and their searches at the server side
for various purposes. On the one hand, they want to exploit
business opportunities by means of Marketing Research and
Targeted Advertising [1]. On the other hand, due to the growth
of the Web and the increasing number of results that may be
retrieved for one search, it has emerged the need of improving
ranking algorithms towards a more efficient search [2].

The most common way to cope with this problem is to
analyze collected data in server logs in order to build a
profile of the user. By applying data mining techniques in the
server logs, search providers extract traits of the user such as
demographic aspects (e.g. age, gender or nationality) or main
areas of interest, that are modelled as categories like “Music”
or “Football”. Afterwards, the ranking algorithms rearrange the
results list to deliver first those that are more useful according
to these preferences [3].

Nevertheless, the logging of all these data for profiling
entails a serious threat for the user’s privacy, as it has been
evidenced several times in the past. One relevant case in this
line was the AOL search data leak in 2006 [4]. The research
department of AOL, in a move directed to help the research
community, released a dataset containing twenty million web
queries for over 650,000 users over a 3-month period [5].
Although AOL themselves intended to anonymize the dataset
by removing some compromising fields (e.g. user names), two
journalists of the New York Times managed to discover one
of the identities of the users using exclusively the terms in
their queries [6]. This was very remarkable because it proved

978-1-4673-5839-2/13/$31.00 ©2013 IEEE

44

Vicen¢ Torra
IITA - Institut d’Investigaci6é en Intel-ligencia Artificial
CSIC - Consejo Superior de Investigaciones Cientificas
Campus de la UAB, 08193 Bellaterra, Catalonia, Spain.
Email: vtorra@iiia.csic.es

that queries by themselves may be used to uniquely identify
an individual or, at least, reduce the search space considerably.

For all these reasons, the research framework where this
paper is included aims to develop a Privacy Enhancement
Technology (PET, for short) for web search. In the past decade
several PETs have been developed pursuing this objective (for
example, [7], [8], [9], [10], [11], [12], [13]), and the trend
is shifting to social networks because privacy risks are more
obvious (see for instance [14], [15], [16], [17]).

Our approach is characterized by taking into account search
personalization. We assume that personalization benefits the
user and consider the trade-off between the use (person-
alization) and the cost (privacy) of releasing data. In our
approach, data refers exclusively to queries, since we assume
problems associated to other data as the IP address or browser
fingerprints as solved, and hence we assume that the adversary
has no background knowledge to use in conjunction with the
server log.

The rest of the paper is organized as follows. Section II
reviews the state-of-the-art in private information retrieval
oriented to Web and recalls the basic operation of the Dis-
sociating Privacy Agent (DisPA for short) [18]. Section III
describes the self-adaptive classification mechanism. We eval-
uate in Section IV this new approach and present the results
obtained. In Section V we discuss the limitations and give
some lines of future work. Finally, we offer our conclusions
in Section VL.

II. RELATED WORK

The PIR problem was first introduced in 1995 by Chor,
Goldreich, Kushilevitz and Sudan [19] in the theoretical set-
ting and in 1997 by Kushilevitz and Ostrovsky [20] in the
computational setting. It was stated as a user that wants to
retrieve an item from a database without revealing which item
he is actually retrieving. PIR protocols that tackle this problem
are based in assumptions that are not feasible when it comes
to retrieve information from the Web. For instance, they often
assume cooperation by the provider. However, search providers
are reluctant to add extra operations because it would increase
the response time. Another important difficulty that makes
them inconvenient is the computational complexity of these
methods given the huge size of the Web.

For this reason, the constraint of privacy is very often
relaxed towards more applicable strategies. These other ap-
proaches allow providers to know the terms of the query that
the user is submitting but attempt to hide which is the true
web site that the user is looking for. A family of techniques
grounded on this approach are named obfuscation-based [21]
techniques which, at the same time, are often classified in
two groups: (i) profile-based, trying to hide the real profile
of the user by submitting false queries (e.g. TrackMeNot [8])
and (i) query-based, which aims to hide the real query by
generating bogus terms and adding them to the search request
(e.g. GooPIR [7]).

There is another line of research that intends to hide the
identity of the user (user anonymity) rather than the informa-
tion that he is attempting to retrieve. Most of the strategies
that we have found in the literature on user anonymity are
based on mixing. For instance, the User Private Information
Retrieval (UPIR) [9] is a peer-to-peer community of users that
submit queries ones on behalf of others.

Besides of the particular shortcomings that each of these
approaches have, there exist one drawback in common. All
of them diminish the quality of server logs for profiling. On
the one hand, obfuscation-based techniques introduce false
information about the preferences of the user, on the other
hand, mixing techniques submit queries of different users in
the same log.

In the following subsection we are going to recall the basic
operation of DisPA, our proposal for a PET in web search that
preserves personalization.

A. The Dissociating Privacy Agent

First of all, we are going to describe how the system that
provides the service to the user is modelled. The user sends a
query using an HTTP connection to the search engine using
a cookie that contains a user unique identifier. We make the
assumption that search engines only use cookies to identify
users. This might be a strong assumption to hold but the last
version of the privacy policy and a recent study of the log
retention policies support it [22], [23]. We model the search
engine as a big database of the Web that logs in a file stored in
its hosting server all queries of the user. This file is associated
to the user’s identifier from the cookies.

The Dissociating Privacy Agent is an agent, in the sense of
a program that takes decisions without the user’s supervision.
It acts like a proxy between the user and the search engine
and is implemented as an add-on for Firefox.

The strategy that the agent follows is based on the assump-
tion that users are multifaceted individuals, meaning that they
are interested in many different areas (e.g. “Science”, “Sport”
or “Music”). Thus, the identity of the user is formed by the
union of the facets of his personality and this is what makes
him unique among the population of all users.

In order to protect the identity of the user, the agent
dissociates these facets by creating a new log for each one in
the search-engine’s server. As a result, the identity of the user
is divided and it is more difficult to perform a re-identification

45

by using the dissociated logs. Note that dissociated logs are
still useful for profiling as, by construction, they preserve
partial but real interests of the user that the search engine
may derive for a later use in personalization.

In order to carry out dissociation we define several virtual
identities each one of them owning a corresponding log at
the server side. These virtual identities are built by generating
new values for data that the server uses to track the users (e.g.
identification numbers in cookies). Then, in conjunction with
a proper management of the HTTP connections, we create a
different session in the server for each virtual identity. Each
of these sessions has a context involved that is formed by all
the interaction of the user: jar of cookies, history of queries,
history of clicked links, lists of results, among others (see
Figure 1).

Queriea Categorica HTTP Hoquasta
ODP
gl
Science Coolds for
o2 Virtual Identity 0: id0
@ e Search Web
Engine
" Aports Virtual Tdentity 1: id1[™
L Coolkde for |
6 Arta Virtnal Identity 2: id2
4 Sarvar logw
ido idl id2
al qi qb
q? 4
a5
& of
R Rt S ol T
¥ L))
Profile: ido Profile: idl Profile: id2
Science Football MWusic

Fig. 1. Representation of the spoofing and dissociation of queries

A critical part of this strategy is classification of queries
according to the user’s facets. The user sends queries through
the add-on’s interface and the agent classifies them before sub-
mitting them to the search engine. DisPA uses the taxonomy
of the Open Directory Project (ODP) for this purpose. The
ODP is an index of the web that can be thought as a tree
where nodes are categories and leafs are web pages. Behind
the ODP there is a big community of editors that classify web
pages into the ODP taxonomy adding some description and
keywords.

The facets of the user are modelled as categories of the first
level of the ODP tree which are: Adult, Arts, Games, Shopping,
Business, Health, Society, Computers, Home, News, Reference,
Recreation, Sports, Science, Society. In order to classify a
query, we perform a faceted search in a local search engine
that is built by creating an inverse index of the documents in
the ODP corpus. The outcome of the search is a vector with
coordinates the number of hits of the query in each of the
categories. That is, let ¢ be a query, given the set of categories
C ={ec1, ¢c2,...,¢n}, the vector v would be

v(q) :== (h1, ha, ..., hy) (1)

where h; is the number of documents indexed in category c;
hit by the query ¢, fort =1,...,n.

To solve the problem of polysemy, we also perform a local
personalization to disambiguate queries that have different
meanings. Our approach is based on the browser’s history to
extract a weight for each category. We consider the last k£ web
pages that the user visited and classify them in the same local
search engine. This way we obtain a vector of weights

w(q) = (wla wa, . .. 7wn)a

where the hits of the query and the past interests of the user
are combined. Lastly, we build our classifier as

classify (¢) = argmax {w;} .
c, e C

2

More details about the classification algorithm can be found
in [18] where it is fully specified.

B. User’s specializations

One of the main flaws of this first implementation is that
the set of categories used for classifying is fixed and does not
take into account user’s specializations. A user may have a lot
of facets but he may be interested in ones much more than in
others. For example, compare the queries that are sent from
the computer at the work place and the ones that are sent from
the computer at home.

In some cases, the interests of the user are specialized. Then,
most of the queries are classified in one of the categories and
the corresponding log is almost the whole original log. As
an example to illustrate this, imagine that the user is very
keen on computers. Then, queries fall mostly in the category
“Computers” and the other categories are barely used. As a
result, the dissociation by means of the first level of the ODP
has no effect and the agent fails in its attempt to protect the
user.

The main idea of our approach is that this category might
be expanded to include more specific categories that describe
user’s interest more accurately. In the example above, com-
puters would be expanded with the children of its node in
the ODP tree: Al, Algorithms, Games, Hacking, Internet, etc.
This way queries are more sparse and the dissociation is more
effective.

Nevertheless, note that there is a trade-off between privacy
and personalization in this process. Categories may range from
very broad (upper levels of the tree), to very specific (lower
levels), to the extreme of considering each individual query as
a category. On the one hand, the former configuration would
provide more personalization because we yield more data to
the server, but it’s obvious that there is more disclosure risk.
On the other hand, the latter would provide less personalization
because dissociated logs would contain only one query but the
user would enjoy more privacy.

46

Besides, we have to consider long-term and short-term
interests. A user specialization may be temporal and change
with time. The system must be self-adaptive and rearrange the
set of categories for classification automatically. For instance,
in the example above, if the user becomes suddenly more
interested in the topic “Music”, the system may retract the
old category “Computers” and expand “Music”.

In the following section we are going to give a deeper
explanation of this system and some details about the imple-
mentation.

III. DESIGN

To implement the solution stated in the previous section we
will expand or/and retract categories of the ODP tree whenever
the number of queries in the categories is not balanced, i.e.,
there are categories that have too many queries. For this
reason, one of the main challenges is to decide when this
number is too large.

A. Coefficient of Variation

If we normalize the vector defined in expression 1, we may
consider it as the distribution of probabilities of n random
variables X, representing the event of the query ¢ belonging
to the category ¢;, fori =1,...,n.

Our approach is to measure the dispersion of this distri-
bution and set a threshold that indicates when the number
of queries per category is unbalanced and, thus, we have to
expand or retract a category of the tree. We compute the
coefficient of variation, which is a normalized measure of
dispersion and is defined as

where o and y are the the standard deviation and the mean of
the distribution respectively. Without loss of generalization, we
can consider that all categories start having one query already
classified. This has no effect on the dispersion and we avoid
definition problems assuring that p is never equal to zero.

B. Self-adaptive classification

Let C = {c1,...,c,} be the set of categories used for
classification referred in Section II-A. When the dispersion
reaches a given threshold, we find which is the category with
number of queries more deviated from the mean and look
whether is a positive or a negative deviation. In the positive
case, the category has a number of queries much higher than
the mean and hence it has to be expanded.

The expansion operation is to add all the children of the
category to be expanded into C. Note that we do not remove
the parent from C' because otherwise we would lose a possible
outcome of the classification. For instance, imagine a query
that hits documents contained exclusively in the parent.

In case that it is a negative deviation, the category has too
few queries and it is not worth taking it into account. Thus,
if this happens with all the categories that share the same
parent, we can retract the parent and aggregate all them in
one category.

Once we have some categories expanded, in order to classify
a query using the classifier stated in the Expression 2, we per-
form a level-wise classification described in the Algorithm 1.

Algorithm 1 Level-wise classification

Require: A mapping = {C;w(q)}
Ensure: The label of the query: maxCat
Initialization: parent <— root
maxCat < “Others”
mazValue < 0
repeat
for all entry in mapping do
category < entry.category
if category child of parent then
value < entry.value
if value > mazValue then
maxV alue < value
mazxCat < category
end if
end if
end for
parent < maxCat
until maxCat is not expanded

Algorithm 1 shows that we begin in the first level of the
tree and find the category of maximum weight. Then, if it has
been expanded, we find the child with maximum weight and
so on with the lower levels, until the category that maximizes
the current level has not been expanded.

During the expansion, we generate a new virtual identity
for each child and the virtual identity of the parent stays
the same. This way, the log of the parent in the server may
contain queries of other subcategories but it does not affect
to personalization. From the point of view of disclosure risk
we know that, now that the children is taken into account,
the category will stop growing so much. When retracting a
category we just use the virtual identity of the parent that
we preserved in the expansion operation and, if we expand it
again, we reuse the old virtual identities for the children.

C. Trade-off between personalization and privacy

Note that, as we mentioned in Section II-B, there is a trade-
off between privacy and personalization that can be adjusted by
the election of the set C'. If we choose very specific categories,
it is more difficult to personalize for the server, whereas if we
choose general categories, we provide more data that the server
can exploit, but disclosure risk increases.

Therefore, the continued expansion of categories could
obstruct personalization. The problem is that search engine
providers do not reveal which are the techniques used to
personalize web searches. Moreover, personalization is a slow
process and may take long time lapses to notice any effect.
Consequently, the assessment of personalization turns to be
one of the main problems that query classification deals with.

We cope with this limitation by adding two boundaries
that limit the expansion and retraction of the tree. The upper

47

boundary is the first level of the tree and the lower boundary
is passed as a parameter. Once the lower boundary is defined
we will not be able to expand a category that is in a level
below of it.

As a result, we are able to adjust the level of sparseness of
the logs in the server and, thereby, adjust the trade-off between
privacy and personalization.

D. Algorithm

Every time that a query is sent, the agent follows Algo-
rithm 2. This algorithm expands and retracts the more deviated
categories in order to keep the Coefficient of Variation (CV)
below the chosen threshold.

Note that we compute the CV upon an auxiliary set of
categories. In order to make sure that the stop condition is
always met, we remove those categories that are deviated
but cannot be expanded due to the tree boundaries described
before.

The function findMoreDeviated() takes a set of categories
as an argument and returns the one with maximum deviation
from the mean. The functions expand() and retract() work as
it has been described in Section III-B. remove() and getLevel()
are methods that remove a category from the list of categories
and return the level of the category in the tree, respectively.

Algorithm 2 Self-adaptive classification
Require: Set of categories C'
Ensure: Adapted set C’
computeCV (C)
auxC + C
while C'V > threshold do
devCat < findMoreDeviated(C')
if devCat.numQueries > mean(C') then
if devCat.getLevel() > lowestLevel or devCat is
expanded or devCat has no children then
auxC.remove(devCat)
else
expand(devCat)
end if
else
if devCat.getLevel() < uppermostLevel then
auxC.remove(devCat)
else
retract(devCat)
end if
end if
computeCV (auzC')
end while
C’" + auxC

IV. EMPIRICAL RESULTS

In order to test the agent and prove that disclosure risk
is reduced by the enhancement proposed in this article, we
used the linkage algorithm described in [18]. This algorithm
is supposed to be applied by an adversary on the logs in the

server in order to link those that have been dissociated by
DisPA, and rebuild the original log of the user.

A. Adversary model

We assume that the adversary is the search engine provider
or a third party that has access to all the logs in the server.
The goal of the adversary is to extract new information of the
user from his logs or, in the best case from the adversary’s
point of view, discover the identity of the user. In the following
lines we will describe the capabilities of the adversary, which
are limited because we assume that the adversary lacks of
background knowledge.

The attack carried out by the adversary exploits terms that
appear in most of dissociated logs of the user but that are very
uncommon among the population of all users. These terms will
help the attacker to tell apart between the victim’s logs and
the others’.

B. Attacking algorithm

Firstly, the algorithm expresses logs as vectors using a tf-
idf scheme. The rationale is that tf-idf reflects the importance
of a term in a log offset by its frequency in the collection
of all logs. Then, this algorithm clusters the vectorial space
using the DBSCAN algorithm with the cosine similarity as a
distance.

The linkage algorithm starts with one or more seeds cor-
responding to logs that are known to be of the user. At the
end, all clusters that contain a seed are joined into one unique
cluster that represents the original log.

We use the same measure as in [18] for this evaluation. We
consider the binary classification defined by the property of a
query being part of the final cluster or not. We also consider
the F1-Score as the measure of the disclosure risk. The F1-
Score is a measure to assess the quality of the clustering that
combines precision and recall. Note that in our case, true
positives are queries of the target user that fall in the final
cluster, false positives are queries of other users that fall in
the final cluster, true negatives are queries of other users that
fall out of the final cluster and false negatives are queries of
the target user that fall out of the final cluster.

Besides, the DBSCAN clustering needs a parameter as an
input that defines the neighborhood of a cluster. Despite the
fact that this parameter is not known a priori by the attacker
we want to evaluate the worst case. For this reason we decided
to take a range of possible values and assume that the attacker
knows which one is the optimal.

C. Experiments

For the empirical part we used the AOL released dataset
but, as we were also interested in very specialized users, we
developed a generator of queries based on the keywords stored
in the ODP that we referred in Section II-A. The generator
takes a distribution of probabilities for the set of categories as
a parameter and generates a log of queries according to them.

For the first experiment we created a log choosing the
following distribution

48

Adults 0
Arts 0
Games 0.02
Reference 0.02
Shopping 0
Business 0.04
Health 0.02
News 0
Society 0.1
Computers 0.8
Home 0
Science 0
Sports 0

and generated a set of 300 queries.

For the first experiment we simulated the submitting of
these queries first using the current version of DisPA and,
later on, the extended version presented in this article with
the self-adaptive classification setting the lower boundary to
three levels and the threshold of the coefficient of variation to
80%.

We added 20 random users from the AOL released dataset
and applied the linkage algorithm. We considered the worst
case in which the attacker knows that the biggest log certainly
belongs to the target user. Afterwards, we did the same but
using the agent with the self-adaptive system.

In order to decide if the user is protected or not, we set 50%
of disclosure risk as a threshold. If the F1-Score is below this
50% we say that the user is protected whereas, if it is higher,
we say that the user is not protected.

1 L]
—
W
0.8 | a* 1
)
06 | |]
2 J ?
04 [d
O 1 1 1
0 0.5 1 1.5 2
Neighbourhood distance
Precision +
Recall
F1 (Disclosure Risk) *

Fig. 2. Standard DisPA

In the Figure 2 we show the results of the first part of
the experiment. As we see, there are some values of the
neighbourhood distance for which the user is not protected
because the disclosure risk (i.e. F1-Score measure) is above
the 50%. We can see that it makes no sense to go on evaluating
for values greater than 2 because the precision is maximum.
This means that all logs of the target user fall in the final

of the neighbourhood distance for which the disclosure risk is

above the 50%
In the second part of this experiment we used the self-

adaptive approach and we obtained the results shown in

cluster and it will not improve. In fact, we see that all logs
fall in the final cluster since recall is very low.

1
7 Figure 5.
|
08 7 |
\
| 1 —
0.6 ‘+ | YW
N | 08 | |]
| w
04r / 1 |
i 0.6 | 1
ms———— ° I
0.2 “ | b B “\
I} ;)i
3 04 “‘r B
0 L L L w«;‘g
0 0.5 1 15 2 02 b . J———
Neighbourhood distance j &
Precision + ‘ ‘
Recall
F1 (Disclosure Risk) x 0 0.5 1 1.5 2
Neighbourhood distance
Fig. 3. Self-adaptive classification Precision +
Recall

In the second part of the experiment we did exactly
the same, although the seeds changed because we were
considering a different collection of dissociated logs. In
fact, two categories were expanded during the simulation:
“Top/Computers” and “Top/Computers/Internet”.

As we see in Figure 3, the disclosure risk is below the
50% and, therefore, the user is protected. The percentage of
disclosure risk reduction from the standard DisPA in the worst
case is around 67%.

We designed a second experiment under the same assump-
tions but using the log of a real user. In this case we used
Thelma Arnold’s log, the first user of the AOL released dataset
that was discovered by the journalist of the NYT [6].

1 [
Tq,
0.8 | E
WE
0.6 | o A
® .
04t ;’W |
0.2 ‘]
0 ‘ L L
0 0.5 1 1.5 2
Neighbourhood distance
Precision +
Recall

F1 (Disclosure Risk)

Fig. 4. Standard DisPA

In Figure 4 we show the results for the case using the
standard DisPA for an election of 20 random users an a random
seed. In this case the user is not protected, since the are values

F1 (Disclosure Risk)

Fig. 5. Self-adaptive classification

Now the user is protected but the percentage of reduction
of disclosure risk is not so steep. This time this percentage
is around the 56%. This may be because the profile of a real
user like Thelma Arnold, using the computer in her house, is
not as specialized as the profile artificially generated before.

D. Performance

The overhead in performance is reasonable according to our
estimations using Google’s search engine. The response time
in the worst case (when DisPA has to create a new identity for
the category) is around 2.5 seconds, approximately five times
more than a direct search. After this bootstrapping process, the
normal case is that the identity already exists, in that case the
average response time is 1.5 seconds (three times the response
time in a standard search). Obviously, if the query has already
been sent previously, the results can be fetched from the cache
and the response time is negligible.

Despite having an average overhead of 3 times the standard
search,a user may consider that 1 second extra is not such a
long time to expend in exchange of a more protected search.

V. FUTURE WORK

Empirical results have proved that disclosure risk is much
lower with this method. However, the self-adaptive classifica-
tion has some drawbacks that future research may deal with.

One of the most important shortcoming is that we do not
have measures for personalization and we are forced to define
a lower bound for the expansion of the tree. Further research
could find functions to assess personalization and, thereby,
provide a method to automatically limit this expansion.

Another line of future work, could assess how short-term
interests are gathered by our approach and also, an analysis of
the sensibility of the threshold for the coefficient of variation.

49

Besides, the linkage algorithm used in the experiments
could be improved in several ways. Observe that the main
objective of the algorithm is to provide a way to, given a set
of logs, determine if they belong to the same user or not.
In the evaluation part of this work, we follow the approach
of simulating the server of the search engine by adding some
random logs. This way we approximate the frequency of terms
in the corpus. A statistical analysis should be carried out on
a real server in order to incorporate this information to the
algorithm and obtain a more accurate evaluation. Note that this
analysis should be done periodically since these frequencies
change over time. Furthermore, this would allow us to work
exclusively with the logs of the target user.

Secondly, there could be used other clustering algorithms
like OPTICS, which addresses the inconvenient of defining
a neighbourhood distance and takes into account clusters of
different densities.

Lastly, sequential clustering techniques like the ones de-
scribed in [24] could be used to reduce the complexity of the
algorithm.

VI. CONCLUSION

The main contribution of this research is the implementation
of an improvement for the Dissociating Privacy Agent that
provides less disclosure risk in web search. This enhancement
overcomes the problems associated to user’s specializations
such as users that are interested in very specific areas of
knowledge.

Moreover, we proved that disclosure risk was improved for
our own linkage algorithm and compared the results between
a generated profile intentionally unbalanced to one category
of interest and a real user from the AOL’s released dataset.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 262608.

Partial support by the Spanish MEC projects ARES
(CONSOLIDER INGENIO 2010 CSD2007-00004), eAEGIS
(TSI2007-65406-C03-02) and COPRIVACY (TIN2011-
27076-C03-03) is acknowledged.

REFERENCES

[1] S. Hansell, “Increasingly, Internet’s Data Trail Leads to Court,” Feb.
2006, New York Times.

[2] P. Norvig, “Search Algorithms with Google Director of Research Peter
Norvig,” Oct. 2011, Stone Temple Consulting.

[3] M. Speretta and S. Gauch, “Personalized search based on user search
histories,” in Proceedings of the 2005 International Conference on Web
Intelligence. 1EEE, 2005, pp. 622-628.

[4] EFF, “AOL’s Massive Data Leak,” 2009.

[5] G. Sadetsky, “AOL Data,” Aug.
http://www.gregsadetsky.com/aol-data/

[6] M. Barbaro and T. Zeller, “A Face Is Exposed for AOL Searcher No.
4417749,” 2006, New York Times.

[7]1 J. Domingo-Ferrer, A. Solanas, and J. Castella-Roca, “h(k)-Private In-
formation Retrieval from Privacy-Uncooperative Queryable Databases,”
2008.

[8] D. Howe and H. Nissenbaum, “TrackMeNot: Resisting surveillance in
web search,” Lessons from the Identity Trail: Anonymity, 2009.

2006. [Online]. Available:

50

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]
(17]

(18]

(19]

[20]

[21]

[22]
(23]

[24]

J. Domingo-Ferrer, M. Bras-Amords, Q. Wu, and J. Manj6n, “User-
private information retrieval based on a peer-to-peer community,” Data
and Knowledge Engineering, 2009.

B. Shapira, Y. Elovici, A. Meshiach, and T. Kuflik, “PRAW: A PRivAcy
model for the Web,” Journal of the American Society for Information
Science and Technology, vol. 56, no. 2, pp. 159-172, Jan. 2005.

D. Rebollo-Monedero and J. Forne, “Optimized Query Forgery for Pri-
vate Information Retrieval,” IEEE Transactions on Information Theory,
vol. 56, no. 9, pp. 4631-4642, Sep. 2010.

S. Ye, E. Wu, R. Pandey, and H. Chen, “Noise Injection for Search
Privacy Protection,” 2009 International Conference on Computational
Science and Engineering, pp. 1-8, 2009.

M. Murugesan and C. Clifton, “Plausibly deniable search,” Workshop
on Secure Knowledge Management, vol. 1, pp. 3-8, 2008.

T. Paul, M. Stopczynski, D. Puscher, M. Volkamer, and T. Strufe,
“C4PS - Helping Facebookers Manage Their Privacy Settings,” in
Social Informatics, ser. Lecture Notes in Computer Science, K. Aberer,
A. Flache, W. Jager, L. Liu, J. Tang, and C. Guéret, Eds. Springer
Berlin Heidelberg, 2012, pp. 188-201.

L. Fang and K. LeFevre, “Privacy wizards for social networking sites,”
in Proceedings of the 19th international conference on World wide web,
ser. WWW ’10. New York, NY, USA: ACM, 2010, pp. 351-360.

T. Paul, D. Puscher, and T. Strufe, “Improving the Usability of Privacy
Settings in Facebook,” CoRR, vol. abs/1109.6, 2011.

J. Becker and H. Chen, “Measuring privacy risk in online social
networks,” in Web 2.0 Security and Privacy (W2SP), Oakland, CA, 2009.
M. Judrez and V. Torra, “Toward a privacy agent for information
retrieval,” International Journal of Intelligent Systems, vol. 28, pp. 606—
622, June 2013.

B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private infor-
mation retrieval,” in in proceedings of the 36th Annual Symposium on
Foundations of Computer Science, IEEE. IEEE Comput. Soc. Press,
1995, pp. 41-50.

E. Kushilevitz and R. Ostrovsky, “Replication is not needed: Single
database, computationally-private information retrieval,” in proceedings
of the 38th Annual Symposium on Foundations of Computer Science,
1997.

E. Balsa, C. Troncoso, and C. Diaz, “OB-PWS: Obfuscation-Based
Private Web Search,” Security and Privacy (SP), 2012, 2012.

Google, “Key Terms - Policies and Principles,” Apr. 2012.

V. Toubiana and H. Nissenbaum, “Analysis of Google Logs Retention
Policies,” Journal of Privacy and Confidentiality, vol. 3, no. 1, 2011.
S. Miyamoto and K. Arai, “Different sequential clustering algorithms
and sequential regression models,” in Fuzzy Systems, 2009. FUZZ-IEEE
2009. IEEE International Conference on. IEEE, 2009, pp. 1107-1112.

